The System Software for Automatic Jam Detection and Recovery on Manufacturing System

2012 ◽  
Vol 271-272 ◽  
pp. 575-579
Author(s):  
Hwa Young Jeong ◽  
Bong Hwa Hong

In manufacturing system, around the year 1950’s, computer aided design (CAD) and developments of NC resulted which led to the evolution of systems like computer numerical control (CNC) and direct numerical control (DNC). Today, computer integrated manufacturing is a reality. The advent of computer integrated manufacturing system has got an efficiency and high performance for production. And manufacturing system operating ratio was related by cost-efficiency of the factory operation and increasing good production. However it has still problem that the system engineer who is in the factory hard to keep watching the manufacturing system always in order to recover the manufacturing system when it has system error. In this paper, we propose system jam detection and recovery process for manufacturing system. For this process, we make and use system Jam Database and Jam Recovery Process Sequence.

2013 ◽  
Vol 411-414 ◽  
pp. 1801-1804
Author(s):  
Yong Liu ◽  
Da Zheng Wang ◽  
Xue Shuang Len

This paper describes a strategy to fulfill the needs of the 21st century machinery manufacturing industry, especially for the industry that produces the low repetitive and high productmix components using machining centres. The approach of development strategy is emphasized in developing of computer integrated manufacturing system (CIMS). The system comprises of computer aided design (CAD) and computer aided manufacturing (CAM) modules, which is supported by common and working databases. Focuses on computer-integrated manufacturing's macro aspects and its future development strategy implications. Defines CIMS at the macro and micro level and the various factors that strongly call for the implementation of CIMS. After going into the advantages, concludes with development strategy implications for the future.


2020 ◽  
pp. 321-331
Author(s):  
Divya Zindani ◽  
Kaushik Kumar

The chapter proposes an integrated manufacturing system consisting of three main components: digital prototyping, physical prototyping, and lost core technology. The integrated system combines the beneficial aspects of computer-aided design, computer-aided engineering, rapid prototyping, and rapid tooling. The proposed integrated system is an attempt to compress the product development time while saving cost. The system can be efficient in designing of mold, parts with complex ducts and cavities, and carrying out design analysis through optimization and simulations. The system is therefore an attempt to minimize the waste of material that occurs in the development of a product and is therefore an efficient green technology for the manufacturing industries.


Author(s):  
Divya Zindani ◽  
Kaushik Kumar

The chapter proposes an integrated manufacturing system consisting of three main components: digital prototyping, physical prototyping, and lost core technology. The integrated system combines the beneficial aspects of computer-aided design, computer-aided engineering, rapid prototyping, and rapid tooling. The proposed integrated system is an attempt to compress the product development time while saving cost. The system can be efficient in designing of mold, parts with complex ducts and cavities, and carrying out design analysis through optimization and simulations. The system is therefore an attempt to minimize the waste of material that occurs in the development of a product and is therefore an efficient green technology for the manufacturing industries.


Approximately 75 % of all metalworking manufacture in the United States is in small lot batches and that percentage is expected to increase in the future. In the usual batch-type production shop, a typical part in process spends only about 5 % of its time on production machines and of that 5 %, only about 30 % is actually spent as productive time in shaping the part. Obviously, both the rewards and the potential for increased productivity and efficiency of batch manufacture in the future are very great indeed. How are these rewards and this potential to be realized? It is quite evident that application of the digital computer to online automation and optimization of batch manufacture holds great promise for doing this. The reason for such is that the computer provides, for the first time in history, a means for automating the software component of batch manufacture - the automatic handling of the information flow and the moment-by-moment analysis, planning and control of manufacturing operations. It is the lack of this very capability - the dependency on ‘manual’ manipulation of the software component - that accounts for the highly inefficient situation noted above. To realize this potential of the computer requires a wholly new approach to both the software and the hardware components of manufacture - a systems approach, to bring into being what may be called the computer-integrated manufacturing system. Such a new approach to the combined hardware and software of batch manufacture will require the combination and exploitation, on a systems engineering basis, of many currently embryonic new aspects of manufacturing technology, such as direct numerical control, multi-station manufacturing systems, group technology or cellular manufacture and integrated manufacturing software systems. A Delphi-type technological forecast recently completed by the C.I.R.P. throws some light on the likelihood and timing of the realization of the computer-integrated manufacturing system. According to this forecast, the probability of this approach being operational and well along toward general use by the 1980s is very high.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3819
Author(s):  
Ting-Hsun Lan ◽  
Yu-Feng Chen ◽  
Yen-Yun Wang ◽  
Mitch M. C. Chou

The computer-aided design/computer-aided manufacturing (CAD/CAM) fabrication technique has become one of the hottest topics in the dental field. This technology can be applied to fixed partial dentures, removable dentures, and implant prostheses. This study aimed to evaluate the feasibility of NaCaPO4-blended zirconia as a new CAD/CAM material. Eleven different proportional samples of zirconia and NaCaPO4 (xZyN) were prepared and characterized by X-ray diffractometry (XRD) and Vickers microhardness, and the milling property of these new samples was tested via a digital optical microscope. After calcination at 950 °C for 4 h, XRD results showed that the intensity of tetragonal ZrO2 gradually decreased with an increase in the content of NaCaPO4. Furthermore, with the increase in NaCaPO4 content, the sintering became more obvious, which improved the densification of the sintered body and reduced its porosity. Specimens went through milling by a computer numerical control (CNC) machine, and the marginal integrity revealed that being sintered at 1350 °C was better than being sintered at 950 °C. Moreover, 7Z3N showed better marginal fit than that of 6Z4N among thirty-six samples when sintered at 1350 °C (p < 0.05). The milling test results revealed that 7Z3N could be a new CAD/CAM material for dental restoration use in the future.


2020 ◽  
Vol 174 ◽  
pp. 01048
Author(s):  
Elena Kassikhina ◽  
Vladimir Pershin ◽  
Nina Rusakova

The existing structures of the steel sinking headgear and permanent headframe do not meet the requirements of resource saving (metal consumption and manpower input at installation), and the present methods of the headframe designing do not fully reflect recent possibilities of applying of the advanced information technologies. Technical level of the modern software makes it possible for designers to set up multiple numerical experiments to create a computer simulation that allows solving the problem without field and laboratory experiments, and therefore without special costs. In this regard, a mathematical simulation has been developed and based on it, software to select cross-sections of multi- purpose steel headframe elements and to calculate proper weight of its metal structures depending on the characteristics and hoisting equipment. A headframe drawing is displayed, as the results of the software work, including list of elements, obtained optimal hoisting equipment in accordance with the initial data. The software allows speeding up graphic work and reducing manpower input on calculations and paper work. The software allows developing a three-dimensional image of the structure and its functional blocks, based on the obtained initial parameters, as well as developing control software for units with numerical control (NC) in order to manufacture multi-purpose headframes.


Author(s):  
L Q Tang ◽  
D N Moreton

The timing scroll is an important feeding mechanism on packaging lines. As packaging line speeds have increased and the shape of containers has become more diverse, the techniques used for the design and manufacture of such timing scrolls have become critical for successful packaging line performance. Since 1980, various techniques have evolved to improve scroll design, manufacture and the associated line performance. In recent years, as CAD (computer aided design), CAM (computer aided manufacture) and CNC (computer numerical control) techniques have evolved, scroll design and manufacturing techniques began to be linked with computer techniques. In this paper, a scroll design and manufacturing package is presented which can be run on a minicomputer, such as a μ-VAX on an IBM PC clone. This scroll package can produce a timing scroll for any type of container with a correct pocket shape and good dynamic characteristic. Tests using carefully chosen containers have been made using this package and the results indicate that the scrolls obtained by this package have the correct pocket shape and good line performance. However, the design of a good pick-up geometry for some container shapes remains a problem.


2017 ◽  
Vol 9 (7) ◽  
pp. 168781401771038 ◽  
Author(s):  
Isad Saric ◽  
Adil Muminovic ◽  
Mirsad Colic ◽  
Senad Rahimic

This article presents architecture of integrated intelligent computer-aided design system for designing mechanical power-transmitting mechanisms (IICADkmps). The system has been developed in C# program environment with the aim of automatising the design process. This article presents a modern, automated approach to design. Developed kmps modules for calculation of geometrical and design characteristics of mechanical power-transmitting mechanisms are described. Three-dimensional geometrical parameter modelling of mechanical power-transmitting mechanisms was performed in the computer-aided design/computer-aided manufacturing/computer-aided engineering system CATIA V5. The connection between kmps calculation modules and CATIA V5 modelling system was established through initial three-dimensional models – templates. The outputs from the developed IICADkmps system generated final three-dimensional virtual models of mechanical power-transmitting mechanisms. Testing of the developed IICADkmps system was performed on friction, belt, cogged (spur and bevel gears) and chain transmitting mechanisms. Also, connection of the developed IICADkmps system with a device for rapid prototyping and computer numerical control machines was made for the purpose of additional testing and verification of practical use. Physical prototypes of designed characteristic elements of mechanical power-transmitting mechanisms were manufactured. The selected test three-dimensional virtual prototypes, obtained as an output from the developed IICADkmps system, were manufactured on the device for rapid prototyping (three-dimensional colour printer Spectrum Z510) and computer numerical control machines. Finally, at the end of the article, conclusions and suggested possible directions of further research, based on theoretical and practical research results, are presented.


Sign in / Sign up

Export Citation Format

Share Document