Numerical Analysis of Composite Soil Nailing Retaining Wall under Earthquake

2013 ◽  
Vol 275-277 ◽  
pp. 1353-1358 ◽  
Author(s):  
Tian Zhong Ma ◽  
Yan Peng Zhu ◽  
De Ju Meng

The seismic response of slope supported by composite soil nailing is analyzed by using finite element software ADNIA, in which the EL-Centro wave is selected as input earthquake wave.The analytical contents include the displacement and acceleration of supporting slope, as well as the time history responses of the axial forces of anchors. In the establishment of finite element model, the interaction between soil body and supporting structure is considered. The elastic-plastic M-C model with nonlinear static and dynamic behavior is used to simulate the soil body, and the dual linear strengthen model is adopted to simulate the supporting structure, then the interaction between soil body and supporting structure is simulated with contact element. The results show that the composite soil nailing slope supporting structure has better seismic performance than the general soil nailing slope supporting structure. The maximum horizontal displacement of the latter occurs at the slope top, but that of the former occurs at the slope upper. Especially after the imposition of the prestress, the slope displacement under earthquake reduces significantly, and the axial forces of anchors under earthquake enlarge significantly. Moreover, the axial forces of anchors reach maximum values near the slipping surface. The displacement and the acceleration of slope increase along the slope height. The conclusions obtained provide basis for the seismic design of permanent supporting slope and reference for similar projects.

2014 ◽  
Vol 501-504 ◽  
pp. 1493-1497
Author(s):  
Shu He Wang ◽  
Ji Yuan ◽  
Rui Guo Ma ◽  
Ju Bing Zhang

According to No.3 dam section of Dahuaqiao gravity dam, a three-dimensional finite element model is built by finite element software ANSYS. Mechanics of materials method, response spectrum method and time history analysis method are employed to analyze the strength of the dam section. Results show that the stress of dam toe, dam heel and downstream fold slope are relatively high and stress concentration emerges in those positions. The phenomenon indicates that these areas are vulnerable under the earthquake and precautions must be taken. But under the designed earthquake, the maximum stress of the dam section is below the allowable stress, representing the dam is in a safe state and the strength requirement is satisfied.


2013 ◽  
Vol 7 (1) ◽  
pp. 164-169
Author(s):  
Li Tian ◽  
Wenming Wang ◽  
Ruisheng Ma ◽  
Lei Wang

Collapses of power transmission towers had usually taken place in previous large earthquake. The collapse process of a power transmission tower under earthquake excitation is studied in this paper. Using international finite element software ABAQUS, the three-dimensional finite element model of the power transmission tower is created based on a practical engineering. Three typical seismic records are selected. The progress collapse processes of the power transmission tower under different seismic excitations are simulated using the nonlinear time history method. The collapse paths and failure positions of the power transmission tower are obtained under different seismic excitations. The results can provide reference for seismic design of power transmission tower which can prevent the collapse of the power transmission tower.


2014 ◽  
Vol 1065-1069 ◽  
pp. 48-52
Author(s):  
Shu Long Zhang ◽  
Fen Ting Lu

Abstract. The horizontal displacement of soil in slope and the change law of ground surface settlement are dynamically analyzed by building three dimensional-model of foundation pit with the finite element software, ABAQUS, to simulate the construction process of excavation and support, to figure out the influence of micro pile and waterproof curtain on composite soil nailing wall. The study indicates that mechanical model of soil nailing, waterproof curtain, micro pile, pre-stressed anchor interacting with soil can better simulate the construction process of composite soil nailing wall support and have higher calculation accuracy. The calculation can provide a reference for the design and construction of composite soil nailing wall.


2013 ◽  
Vol 790 ◽  
pp. 396-400
Author(s):  
Li Tian ◽  
Peng Deng

An underground structure has been in a state of static equilibrium under the combined effect of gravity and the surrounding soils confining pressure before internal explosion occurred, and the blast wave can experience multiple reflections and diffractions in closed space, so the overpressure on the surface of structural members was more complex than that when explosion happened in the open space. In this paper, a finite element model of a closed underground frame structure was established by using the finite element software ANSYS/LS-DYNA. Based on the model, numerical simulation by stages was done to study the overpressure distribution on the surface of the retaining wall. This paper main analyzed the effect of the initial balance stress on the blast overpressure distribution rule and the retaining walls dynamic response.


2012 ◽  
Vol 549 ◽  
pp. 879-883
Author(s):  
Lu Ping Yi ◽  
Jing Ji

In order to better understand seismic performance of tower body structure in a square, the symbol tower finite element model is established using the finite element software ANSYS. Modal analysis is carried out and the first 3 natural frequencies and vibration modes of marking tower are obtained. By selecting 2 group natural seismic waves and a synthetic seismic wave the seismic time-history analysis of the model is performed, the symbol tower response under the earthquake action is obtained and the maximum lateral displacement and the maximum stress of symbol tower meet the standard requirements, so mark tower under earthquake are safe. These can provide reference for the same type of engineering design.


2011 ◽  
Vol 261-263 ◽  
pp. 1608-1613
Author(s):  
Yu Yong Fu ◽  
Shu Wang Yan

This article adopts the general finite element analysis software——ANSYS to do the numerical analysis and research on some Composite Soil Nailing. The Drucker-Prager model modified with depth was adopted as the constitutive model. The article presents a lot of numerical calculations and analysis, researching the effects of excavation order, nailing length and nailing obliquity to the horizontal displacement of foundation wall, surface sedimentation and rise of the foundation bottom, giving some useful conclusion which can be used as the references to the design and construction of foundation supported with Composite Soil Nailing.


2013 ◽  
Vol 353-356 ◽  
pp. 2073-2078
Author(s):  
Tian Zhong Ma ◽  
Yan Peng Zhu ◽  
Chun Jing Lai ◽  
De Ju Meng

Slope anchorage structure of soil nail is a kind of economic and effective flexible slope supporting structure. This structure at present is widely used in China. The supporting structure belong to permanent slope anchorage structure, so the design must consider earthquake action. Its methods of dynamical analysis and seismic design can not be found for the time being. The seismic design theory and method of traditional rigidity retaining wall have not competent for this new type of flexible supporting structure analysis and design. Because the acceleration along the slope height has amplification effect under horizontal earthquake action, errors should be induced in calculating earthquake earth pressure using the constant acceleration along the slope height. Considering the linear change of the acceleration along the slope height and unstable soil with the fortification intensity the influence of the peak acceleration, the earthquake earth pressure calculation formula is deduced. The soil nailing slope anchorage structure seismic dynamic calculation model is established and the analytical solutions are obtained. The seismic design and calculation method are given. Finally this method is applied to a case record for illustration of its capability. The results show that soil nailing slope anchorage structure has good aseismic performance, the calculation method of soil nailing slope anchorage structure seismic design is simple, practical, effective. The calculation model provides theory basis for the soil nailing slope anchorage structure of seismic design. Key words: soil nailing; slope; earthquake action; seismic design;


2014 ◽  
Vol 1065-1069 ◽  
pp. 19-22
Author(s):  
Zhen Feng Wang ◽  
Ke Sheng Ma

Based on ABAQUS finite element analysis software simulation, the finite element model for dynamic analysis of rigid pile composite foundation and superstructure interaction system is established, which selects the two kinds of models, by simulating the soil dynamic constitutive model, selecting appropriate artificial boundary.The influence of rigid pile composite foundation on balance and imbalance of varying rigidity is analyzed under seismic loads. The result shows that the maximum bending moment and the horizontal displacement of the long pile is much greater than that of the short pile under seismic loads, the long pile of bending moment is larger in the position of stiffness change. By constrast, under the same economic condition, the aseismic performance of of rigid pile composite foundation on balance of varying rigidity is better than that of rigid pile composite foundation on imbalance of varying rigidity.


2014 ◽  
Vol 672-674 ◽  
pp. 1550-1553
Author(s):  
Zhen Guo Shang ◽  
Zhong Chao Ma ◽  
Zhen Sheng Sun

A procedure for obtaining the load distribution in a four point contact wind turbine yaw bearing considering the effect of the structure’s elasticity is presented. The inhomogeneous stiffness of the supporting structures creates a variation in the results obtained with a rigid model. A finite element model substituting the rolling elements with nonlinear compression springs has been built to evaluate the effect of the supporting structure elasticity on the contact forces between the rolling elements and the raceways.


2013 ◽  
Vol 838-841 ◽  
pp. 779-785
Author(s):  
Liang Gu

The double-row piles supporting structure is a new type of supporting and protecting for deep foundation excavation. It is widely used to in design of deep foundation pit. Now how to simply and effectively design the structure of double-row piles is in a research and discuss stage. Using the Midas GTS finite element method, the displacement and stress distribution of double-row piles in the different stages of excavation are obtained, and the horizontal displacement and stress distribution of double-row piles in the different stages of excavation are calculated. The results of Midas GTS finite element analysis as follows: (1) after the excavation of foundation pit, the horizontal displacement of pile-top is maximum. The horizontal displacement decreases gradually with depth increases. And the displacement of front row piles is larger than that of back row piles; (2) the maximum shear stress is at the distance 5m to the foundation basement. The higher bending moment at the pile-top and the distance 10m to the foundation basement are consistent with the actual monitoring date. (3) the results of finite element analysis is close to the Richard software and actual monitoring data. It is show that using the finite element analysis to analyze the double-row piles supporting structure with is veritable and credible.


Sign in / Sign up

Export Citation Format

Share Document