Flexural-Torsional Buckling of Double-Angle Compression Members

2013 ◽  
Vol 284-287 ◽  
pp. 1334-1339
Author(s):  
Jui Ling Liu ◽  
Dung M. Lue ◽  
Ching H. Lin

The evaluation for double-angle compression members is a tedious procedure and is not an easy task for practicing engineers. In this study, a computer program has been developed to calculate the Pu based on the AISC specifications. It is found that the calculated value is quite close to the tabulated one if effective length (KL) is longer than 10 feet. However, the Pu is not tabulated for effective length less than 10 feet in some lager sections. It is found that the differences between the calculated value and the interpolated value could be as much as 20%. Unfortunately, the difference errors are not on conservative side and the use of interpolated values is not acceptable in practice. This study evaluates all double-angle compressive formulas provided by the AISC manuals and the comparisons among them are presented. The Pu versus KL curves, in which effective lengths less than 10 feet are added and plotted. Some supplementary tabulated values, which required in routine design and not listed in current AISC design manuals, are also furnished. This study will fulfill the needs for those who seek higher performance and wider coverage when evaluating the design of double-angle compression members under flexural-torsion condition.

2010 ◽  
Vol 163-167 ◽  
pp. 351-357
Author(s):  
Zhe Zhang ◽  
Guo Qiang Li ◽  
Fei Fei Sun

To analyze the flexural and torsional buckling of H-beams with corrugated webs, the stress characteristics were compared with beams with plat webs firstly, then, the previous methods calculating warping constant of the H-beams with corrugated webs was discussed. Based on such works, a new calculation method was put forward. This method is simple in shape, by which the warping constant can be calculated easily. To test the accuracy of the method, plenty of numerical simulation models of beams under uniform bending was used to compare the difference between each method. The results proved that the method in this paper was successful and convenient.


2018 ◽  
Vol 16 (3) ◽  
pp. 465-474
Author(s):  
Oladimeji Olalusi ◽  
Tony Dirisu ◽  
Chinwuba Arum

This study presents the design results of a C-sharp based computer program developed for the design of laterally unrestrained I-section steel beams. The program was developed based on the stipulations of BS 5950 and Eurocode 3 (EC3) design standards. Several sets of steel beam models having the same cross-sectional dimensions but different laterally unrestrained span lengths, were designed using the developed program, and the results were validated using an established software, Staad Pro. The design results obtained were found similar to the results obtained using Staad Pro. For a specific beam section with constant loadings, as the span length of the laterally unrestrained compression flange increases the buckling capacity reduces, thus the longer the beam, the more it is susceptible to lateral torsional buckling. Comparison of the results obtained using BS 5950 to those of EC 3 at different laterally unrestrained span lengths revealed that the areas of design sections obtained for BS 5950 are 21.5%, on the average, higher than those of EC3. Thus, beams with laterally unrestrained compression flange designed according to the requirements of EC 3 are more economical. The difference in results is because of the differences in the principles of design and measures used between the two standards.


2020 ◽  
Vol 982 ◽  
pp. 201-206
Author(s):  
Jaksada Thumrongvut ◽  
Natthawat Pakwan ◽  
Samaporn Krathumklang

In this paper, the experimental study on the pultruded fiber-reinforced polymer (pultruded FRP) angle beams subjected to transversely eccentric load are presented. A summary of critical buckling load and buckling behavior for full-scale flexure tests with various span-to-width ratios (L/b) and eccentricities are investigated, and typical failure mode are identified. Three-point flexure tests of 50 pultruded FRP angle beams are performed. The E-glass fibre/polyester resin angle specimens are tested to examine the effect of span-to-width ratio of the beams on the buckling responses and critical buckling loads. The angle specimens have the cross-sectional dimension of 76x6.4 mm with span-to-width ratios, ranging from 20 to 40. Also, four different eccentricities are investigated, ranging from 0 to ±2e. Eccentric loads are applied below the horizontal flange in increments until beam buckling occurred. Based upon the results of this study, it is found that the load and mid-span vertical deflection relationships of the angle beams are linear up to the failure. In contrast, the load and mid-span lateral deflection relationships are geometrically nonlinear. The general mode of failure is the flexural-torsional buckling. The eccentrically loaded specimens are failed at critical buckling loads lower than their concentric counterparts. Also, the quantity of eccentricity increases as buckling load decreases. In addition, it is noticed that span-to-width ratio increases, the buckling load is decreased. The eccentric location proved to have considerable influence over the buckling load of the pultruded FRP angle beams.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Osama A. B. Hassan

Abstract This study investigates the stability of timber members subjected to simultaneously acting axial compression and bending moment, with possible risk for torsional and flexural–torsional buckling. This situation can occur in laterally supported members where one side of the member is braced but the other side is unbraced. In this case, the free side will buckle out of plane while the braced side will be prevented from torsional and flexural–torsional buckling. This problem can be evident for long members in timber-frame structures, which are subjected to high axial compression combined with bending moments in which the member is not sufficiently braced at both sides. This study is based on the design requirement stated in Eurocode 5. Solution methods discussed in this paper can be of interest within the framework of structural and building Engineering practices and education in which the stability of structural elements is investigated. Article Highlights This case study investigates some design situations where the timber member is not sufficiently braced. In this case, a stability problem associated with combined torsional buckling and flexural buckling can arise. The study shows that the torsional and/or flexural–torsional buckling of timber members can be important to control in order to fulfil the criteria of the stability of the member according to Eurocode 5 and help the structural engineer to achieve safer designs. The study investigates also a simplified solution to check the effect of flexural torsional buckling of laterally braced timber members.


2021 ◽  
Vol 164 ◽  
pp. 107821
Author(s):  
Ying Zhang ◽  
Yidu Bu ◽  
Yuanqing Wang ◽  
Zhongxing Wang ◽  
Yuanwen Ouyang

2009 ◽  
Vol 31 (11) ◽  
pp. 2711-2722 ◽  
Author(s):  
M.M. Pastor ◽  
M. Casafont ◽  
E. Chillarón ◽  
A. Lusa ◽  
F. Roure ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document