Reformative Arithmetic for Non Detection Zone Islanding Detection Based on the Voltage Shift Technique

2013 ◽  
Vol 291-294 ◽  
pp. 2057-2062
Author(s):  
Ji Hong Zhang ◽  
Pei Hong Yang ◽  
Zhen Kui Wu

The quick & exact anti-islanding is a mandatory feature for grid-connected distributed generation system. The conventional passivity detection method has the biggish blind section and lower reliability, especially when the grid-connected inverter export power and burthen power are balanceable; the islanding detection often is disabled. And that the initiative islanding detection method is considered an effective measure, but if the arithmetic & parameter choice irrelevantly, the islanding can not be detected easily; even injected harmonic to the grid and destroy power quality. An improved voltage shift technique islanding detection arithmetic is put forward in this paper, and the correlative mathematics model is established, and the project is analyzed and studied theoretically based on IEEE Std.2009-929 criterion. The result shows the method will not affect power quality, at the same time it can detect islanding phenomenon quickly& exactly, so it is feasible.

2013 ◽  
Vol 318 ◽  
pp. 597-600
Author(s):  
Dong Xie ◽  
Xing Zhang

In the area of renewable energy technologies, islanding of distributed generation system needs to be prevented due to safety reasons and to ensure quality of power supplied to the customers. Several islanding detection methods based on passive and active schemes have been proposed in the literature. Passive methods have a large non detection zone (NDZ), While active schemes degrade power quality. This paper proposed a new passive islanding detection method which combines the Wavelet-transform and neural network techniques. This method can reduce the NDZ to zero without any perturbation that deteriorates the power quality. The simulation results show that the proposed islanding detection method is effective and robust in all kind of conditions.


Author(s):  
Abbineni Sai Subhadra ◽  
P.Linga Reddy ◽  
Shailesh . B Modi

Islanding detection of Distributed Generation (DG) is considered as one of the most important aspects when interconnecting DGs to the distribution system. It was the crucial problem in distributed generation. This detection phenomenon having a great importance. These detection methods are divided into active and passive islanding detection. These two methods are based on changing in parameters such as frequency, voltage and current harmonics. But these methods have some challenges such as reduction in power quality and large Non Detection Zone (NDZ). In this paper, the proposed method is change of Total harmonic distortion (THD) will be studied for islanding detection diagnosis. The studied system was considered by following the standard IEEE-1547 and UL-1741.The system was simulated using MATLAB/ SIMULINK.


2019 ◽  
Vol 15 (2) ◽  
pp. 55-61
Author(s):  
Basanta Pancha ◽  
Rajendra Shrestha ◽  
Ajay Kumar Jha

In response to the problem of increased load demand, efforts have been made to decentralize the power utility through the use of distributed generation (DG). Despite the advantages of DG integration, un-intentional islanding remains a big challenge and has to be addressed in the integration of DG to the power system. Islanding condition occurs when the DG continues to power a part of the grid system even after the connection to the rest of the system has been lost, either intentionally or un-intentionally. The unintentional islanding mode of operation is not desirable as it poses a threat to the line workers’ safety and power quality issues. There are many methods which may be used to detect the islanding situation. Passive methods such as under/over voltage and under/over frequency work well when there is an imbalance of power between the loads and the DG present in the power island. However, these methods has larger Non Detection Zone (NDZ) and fail to detect the islanding condition if there is a balance of power supplied and consumed in the island. Remote technique of islanding detection is reliable but is not economical in small network area. Active technique of islanding detection distorts the power quality of the system as it introduces external signal in the system. This paper uses the Wavelet Transform (WT) to extract the features of voltage signal at PCC (Point of Common Coupling) and these features have been used to train Artificial Neural Network (ANN). The ANN model trained by these WT features, which understands the pattern of input feature vector, have been used to classify the islanding and non-islanding events. In this proposed method, NDZ has been efficiently eliminated which is created due to difference between active and reactive power during islanding condition. No power quality problem exists in this method as there is no disturbance injection. Hence, this proposed method is better than conventional passive and active methods.


Author(s):  
Abbineni Sai Subhadra ◽  
P. Linga Reddy ◽  
Shailesh B. Modi

Islanding detection of Distributed Generation (DG) is considered as one of the most important aspects when interconnecting DGs to the distribution system. It was the crucial problem in distributed generation. This detection phenomenon having a great importance. These detection methods are divided into active and passive islanding detection. These two methods are based on changing in parameters such as frequency, voltage and current harmonics. But these methods have some challenges such as reduction in power quality and large Non Detection Zone (NDZ). In this paper, the proposed method is change of Total Harmonic Distortion (THD) will be studied for islanding detection diagnosis. The studied system was considered by following the standard IEEE-1547 and UL-1741. The system was simulated using MATLAB/ SIMULINK.


Author(s):  
S. Govinda Raju ◽  
K. Harinadha Reddy ◽  
Ch. Rami Reddy

Background: The growth of renewable energy sources is increasing in the world to meet the energy consumption demand. The major problem after the integration of renewable sources is islanding. The islanding is not safe for equipment and customers. As per Distributed Generation (DG) interconnection standards, it should be detected within 2 seconds. Objective: This paper presents the review of various islanding detection methods for increasing the stability of islanded DG. This will help future researchers for selecting the best islanding detection method with zero NDZ. Methods & Results: The islanding detection methods are classified as local and remote techniques. The local techniques are again classified as active, passive and hybrid methods. Each method is presented with their islanding detection time, power quality issues, Non Detection Zone (NDZ), advantages and disadvantages. Conclusion: The fuzzy based artificial intelligence with Particle Swarm Optimization (PSO) passive methods have been reduced the NDZ to zero and increase the stability of DG without degrading the power quality as active and passive methods.


2021 ◽  
Vol 71 (5&6) ◽  
pp. 91
Author(s):  
Dong Xie ◽  
Dajin Zang ◽  
Peng Gao ◽  
Junjia Wang ◽  
Zhu Zhu

In distributed generation systems, islanding detection is a necessary function of grid-connected inverters. In view of the performance disadvantages of traditional passive and active islanding detection methods, this paper proposes a novel passive islanding detection method. The proposed method first extracts characteristic parameters from the inverter output voltage signal and inverter output current signal through lifting wavelet transform, and then conducts the pattern recognition of these extracted characteristic parameters via BP neural network, so as to judge if there is an islanding phenomenon. As verified by the simulation and experiment results, the islanding detection method proposed in this paper is effective, and is featured by high detection speed and small non-detection zone, without affecting electric energy quality; its detection performance has been remarkably improved in comparison with that of traditional islanding detection methods.


2018 ◽  
Vol 7 (1.8) ◽  
pp. 228 ◽  
Author(s):  
Gundala Srinivasa Rao ◽  
G. Kesava Rao

The penetration of Distributed generation (DG) ensures the increase of demand for consistent, reasonable and spotless electricity facing with some design and operational challenges such as islanding. Several active and passive methods have been suggested in the past to detect islanding. Since they suffer from the large non detection zone and a high cost. In order to defeat such issues we propose a SVM based pattern recognising approach for islanding detection in a multiple DG system. The results show that our proposed method detects islanding with high accuracy.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Manop Yingram ◽  
Suttichai Premrudeepreechacharn

The mainly used local islanding detection methods may be classified as active and passive methods. Passive methods do not perturb the system but they have larger nondetection zones, whereas active methods have smaller nondetection zones but they perturb the system. In this paper, a new hybrid method is proposed to solve this problem. An over/undervoltage (passive method) has been used to initiate an undervoltage shift (active method), which changes the undervoltage shift of inverter, when the passive method cannot have a clear discrimination between islanding and other events in the system. Simulation results on MATLAB/SIMULINK show that over/undervoltage and undervoltage shifts of hybrid islanding detection method are very effective because they can determine anti-islanding condition very fast.ΔP/P>38.41% could determine anti-islanding condition within 0.04 s;ΔP/P<-24.39% could determine anti-islanding condition within 0.04 s;-24.39%≤ΔP/P≤ 38.41% could determine anti-islanding condition within 0.08 s. This method perturbed the system, only in the case of-24.39% ≤ΔP/P ≤38.41% at which the control system of inverter injected a signal of undervoltage shift as necessary to check if the occurrence condition was an islanding condition or not.


Solar Energy ◽  
2013 ◽  
Vol 97 ◽  
pp. 155-167 ◽  
Author(s):  
Ku Nurul Edhura Ku Ahmad ◽  
Nasrudin Abd Rahim ◽  
Jeyraj Selvaraj ◽  
Ahmad Rivai ◽  
Krismadinata Chaniago

Sign in / Sign up

Export Citation Format

Share Document