Mechanical Properties of Nanocrystalline Coatings Prepared by Thermal Spraying Process

2014 ◽  
Vol 511-512 ◽  
pp. 32-36
Author(s):  
Nacer E. Bacha ◽  
Slimane Bouterfaya

The uniaxial tensile tests are generally used to measure the yield stress and/or tensile stresses. The majority of the results, resulting from this method and deferred in the literature on the mechanical properties of amorphous materials, were obtained in the ribbons form generally produced by melt spinning. This limitation in the shape of the specimens for tensile tests was inherent in the manufacturing techniques of the amorphous materials which required cooling rates of about 106°C/s. The fabrication of amorphous coatings by plasma spraying, in tubular form, should improve rigidity of the specimens, increase their size and especially get a more reliable means to the amorphous coatings under the tensile test. Amorphous coatings of NiCrBSi alloys are produced by thermal plasma spraying. The thickness of the resulting amorphous deposit may be up to 500 μm. The uniaxial tensile tests were carried on Instron machine at room temperature. Microstructural studies are investigated by means of X-ray diffraction (XRD), scanning (SEM) and transmission (TEM) electron microscopy. The test methodology used in this study shows that it is possible to obtain a comprehensive assessment of the mechanical properties of the amorphous coatings deposited by thermal plasma in tubular form. Plasma sprayed coatings in tubular form, under the uniaxial tensile test in the amorphous state, crystallized and nanocrystallized, fracture without bursting compared to samples in the form of amorphous ribbon.

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4224
Author(s):  
Che-Yu Lin ◽  
Jiunn-Horng Kang

Mechanical properties are crucial parameters for scaffold design for bone tissue engineering; therefore, it is important to understand the definitions of the mechanical properties of bones and relevant analysis methods, such that tissue engineers can use this information to properly design the mechanical properties of scaffolds for bone tissue engineering. The main purpose of this article is to provide a review and practical guide to understand and analyze the mechanical properties of compact bone that can be defined and extracted from the stress–strain curve measured using uniaxial tensile test until failure. The typical stress–strain curve of compact bone measured using uniaxial tensile test until failure is a bilinear, monotonically increasing curve. The associated mechanical properties can be obtained by analyzing this bilinear stress–strain curve. In this article, a computer programming code for analyzing the bilinear stress–strain curve of compact bone for quantifying the associated mechanical properties is provided, such that the readers can use this computer code to perform the analysis directly. In addition to being applied to compact bone, the information provided by this article can also be applied to quantify the mechanical properties of any material having a bilinear stress–strain curve, such as a whole bone, some metals and biomaterials. The information provided by this article can be applied by tissue engineers, such that they can have a reference to properly design the mechanical properties of scaffolds for bone tissue engineering. The information can also be applied by researchers in biomechanics and orthopedics to compare the mechanical properties of bones in different physiological or pathological conditions.


2021 ◽  
Vol 71 (03) ◽  
pp. 359-364
Author(s):  
Abir Roy ◽  
Abhishek Kumar

In the present study, AlMgSi alloy was processed through multi-axial compression (MAC) to produce ultrafine-grained microstructure at room temperature. The AlMgSi alloys are widely used in automobile industries for making cylinder heads and brake disks etc. MAC was performed up to three cycles and showed improvement in mechanical properties. The impact of different strain levels upon microstructure changes is investigated using electron backscatter diffraction (EBSD). The average grain size reduced from an initial average grain size of ~ 124 to ~ 3 μm after completion of three cycles of MAC processing. Samples were tested for mechanical properties using uniaxial tensile test, hardness measurements, and corrosion. Tensile test results show a considerable increase in yield strength from ~90 MPa to ~249 MPa after 3 cycles of MAC. The average hardness value increased from 52 VHN to 90 VHN after 3 cycles of MAC. The corrosion resistance of MAC processed samples was found to decrease in comparison to solution-treated samples.


2013 ◽  
Vol 310 ◽  
pp. 124-128 ◽  
Author(s):  
Xiao Jun Zhang ◽  
Xin Long Chang ◽  
Shi Ying Zhang ◽  
Jie Tang Zhu

In order to investigate low temperature mechanical characteristics of HTPB (hydroxy-terminated polybutadiene binder) propellant, uniaxial tensile tests at both the low temperature and room temperature after short storage at low temperature were conducted and SEM (scanning electron microscopy) was used to observe fracture surfaces. The mechanical properties and stress-strain curves were obtained. The experimental results show that matrix tearing and particle brittle fracture occur in low temperature tensile test, but only particle/matrix interface de-wetting in room temperature tensile test. Low temperature stress-strain curves of propellant appear obviously yield region, and the yield degree is involved to the low temperature value. The low temperature mechanical properties such as maximum tensile stress, elastic modulus and strain at maximum stress against temperature are different from room temperature mechanical properties.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2932
Author(s):  
Prithwish Tarafder ◽  
Christopher Rock ◽  
Timothy Horn

Mechanical properties of powder bed fusion processed unalloyed copper are reported majorly in the as-fabricated condition, and the effect of post-processes, common to additive manufacturing, is not well documented. In this study, mechanical properties of unalloyed copper processed by electron beam powder bed fusion are characterized via room temperature quasi-static uniaxial tensile test and Vickers microhardness. Tensile samples were extracted both perpendicular and parallel to the build direction and assigned to three different conditions: as-fabricated, hot isostatic pressing (HIP), and vacuum annealing. In the as-fabricated condition, the highest UTS and lowest elongation were obtained in the samples oriented perpendicular to the build direction. These were observed to have clear trends between sample orientation caused primarily by the interdependencies between the epitaxial columnar grain morphology and dislocation movement during the tensile test. Texture was insignificant in the as-fabricated condition, and its effect on the mechanical properties was outweighed by the orientation anisotropy. The fractographs revealed a ductile mode of failure with varying dimple sizes where more shallow and finely spaced dimples were observed in the samples oriented perpendicular to the build direction. EDS maps reveal that grain boundary oxides coalesce and grow in HIP and vacuum-annealed specimens which are seen inside the ductile dimples and contribute to their increased ductility. Overall, for the post-process parameters chosen in this study, HIP was observed to slightly increase the sample’s density while vacuum annealing reduced the oxygen content in the specimens.


Open exposure to the extraordinary amount of the heat under the sun can causes the damage to the skin and lead to diseases. The analysis of the mechanical properties on cow skin which investigated by analyzing the uniaxial tensile test in order to produce the outcome based on the situation stated. Besides that, cow skin was selected in order to compare with the previous study on sheep skin. The aim of the study is to investigate the effect of varies temperature on mechanical properties of the animal skin. Experimental and numerical is part of the integration process of the data. Uniaxial tensile test was performed to measure the basic mechanical parameter of stress-stretch by according to the ASTM D2209-00 testing standard. Other than that, the hyperelastic constitutive model Arruda & Boyce (A&B) equation is simplified via numerical approach for finding the material parameter. A graph of Stress-Stretch (σ-λ) plotted for curve fit with the experimental data to obtain the mechanical properties of parameter. Overall, the samples applied with lanolin coating is more elastic even though it dried at 40oC compared to the sample sets without lanolin coating. With having the specific mechanical data of the skin by computational program and analysis it become more reliable by showing the real skin behavior to the variable.


Author(s):  
M. Turski ◽  
P. J. Bouchard ◽  
M. Smith ◽  
L. Edwards ◽  
P. J. Withers

This work involves the determination of uniaxial stress-strain data from ‘cross-weld’ specimens machined from across a 3 pass welded generic 316 type austenitic stainless steel grooved plate test specimen, using Electronic Speckle Pattern Interferometry (ESPI). ESPI has been applied as a novel surface strain mapping tool for measuring the mechanical properties of uniaxial tensile test specimens with heterogenous microstructures. Using this technique, proof stresses have been measured at different distances from the centre of a manual metal arc (MMA) weld, using a single cross-weld specimen. Mechanical properties were measured using cross-weld specimens taken across a first pass and third pass weld bead, thus allowing the effect of subsequent weld passes on a single weld bead to be quantified. Measurements indicate 0.2% proof stress values more than 100 MPa higher in the first pass weld bead compared to the third pass. This is due to the higher levels of accumulated plastic strain in the first pass weld bead, as a result of thermo-mechanical cycling associated with subsequently deposited weld passes.


2007 ◽  
Vol 7-8 ◽  
pp. 187-194 ◽  
Author(s):  
Rafal M. Molak ◽  
M. Kartal ◽  
Zbigniew Pakiela ◽  
W. Manaj ◽  
Mark Turski ◽  
...  

The aim of this collaborative study was to measure mechanical properties of 14MoV67-3 steel taken from small sections of material machined in-situ from an operating high pressure collector pipe after different operating lifetimes (from 0h to 186 000h) at elevated temperatures (540°C). Conventional methods of measuring mechanical properties of materials, such as the uniaxial tensile test require relatively large test samples. This can create difficulties when the amount of material available for testing is limited. One way of measuring mechanical properties from small quantities of material is using micro tensile test samples. In this work, micro-samples with a total length of 7.22mm were used. Digital Image Correlation method (DIC) was employed for the strain measurements in a uniaxial tensile test. This paper shows that there is measurable difference in the yield, ultimate tensile strength and elongation to failure as a function of the plant operating conditions. This work demonstrates, therefore, a ‘semi-invasive’ method of determining uniaxial stress-strain behaviour from plant components.


Sign in / Sign up

Export Citation Format

Share Document