scholarly journals THE EFFECT OF FILLER CONTENT ON MECHANICAL PROPERTIES OF POLYPROPYLENE/CLAY NANOCOMPOSITES

2016 ◽  
Vol 5 (1) ◽  
Author(s):  
Teuku Rihayat ◽  
Noor Mustafa ◽  
Saari Mustapha

This study investigates the effect of filler content on mechanical properties for polypropylene. There are  synthesis clay and  un-synthesis clay  used  as  filler  content. Different ratio  of  clay  was  d  in polypropylene to study which ratio have a better mechanical properties. The tensile test was carried out using INSTRON5565 and the maximum stress, strain, and modulus of elasticity observed. Results of the study showed that polypropylene/clay nanocomposite has a higher maximum stress compare to pure polypropylene and un-synthesis clay have a lowest. Besides that modulus of elasticity of specimen calculated and finds that it increased with increment filler content and strain did not affect by filler. The conclusion is synthesis clay filled into polypropylene will having a better material.Keywords: Nanocomposite, polypropylene, synthesis clay.

10.30811/jstr ◽  
2016 ◽  
Vol 5 (1) ◽  
Author(s):  
Teuku Rihayat ◽  
Noor Mustafa ◽  
Saari Mustapha

This study investigates the effect of filler content on mechanical properties for polypropylene. There are  synthesis clay and  un-synthesis clay  used  as  filler  content. Different ratio  of  clay  was  d  in polypropylene to study which ratio have a better mechanical properties. The tensile test was carried out using INSTRON5565 and the maximum stress, strain, and modulus of elasticity observed. Results of the study showed that polypropylene/clay nanocomposite has a higher maximum stress compare to pure polypropylene and un-synthesis clay have a lowest. Besides that modulus of elasticity of specimen calculated and finds that it increased with increment filler content and strain did not affect by filler. The conclusion is synthesis clay filled into polypropylene will having a better material.Keywords: Nanocomposite, polypropylene, synthesis clay.


2019 ◽  
Vol 805 ◽  
pp. 59-64
Author(s):  
Achmad Chafidz ◽  
Cholila Tamzysi ◽  
Lilis Kistriyani ◽  
Ratna Dewi Kusumaningtyas ◽  
Dhoni Hartanto

PP/clay nanocomposites samples of 1st and 2nd cycles (recycle) and different nanoclay loadings (i.e. 0, 5, 10, 15 wt%) samples were made by utilizing twin-screw extruder and injection molding machine. The samples were then characterized using a tensile test machine. The tensile tests results showed that modulus of elasticity and tensile strength of the nanocomposites samples for both 1st and 2nd cycles were all higher than the neat PP, and increased with increasing nanoclay loadings. The enhancements of modulus of elasticity (as compared to the neat PP) for 1st cycle of the nanocomposites were about 38.08%, 49.33%, and 78.65% for NC-5-I, NC-10-I, and NC-15-I, respectively. Whereas, for the 2nd cycle of the nanocomposites were about 44.33%, 59.59%, and 84.69% for NC-5-II, NC-10-II, and NC-15-I, respectively. This indicated that the incorporation of nanoclay in the PP matrix significantly increased mechanical properties, especially modulus of elasticity and tensile strength of the nanocomposites. Additionally, values of modulus of elasticity and tensile strength of 1st cycle and 2nd cycle of PP/clay nanocomposites were compared by plotting them in two graphs. The plots revealed that reprocessing of the nanocomposites did not significantly influence the mechanical properties of the nancomposites.


2013 ◽  
Vol 310 ◽  
pp. 124-128 ◽  
Author(s):  
Xiao Jun Zhang ◽  
Xin Long Chang ◽  
Shi Ying Zhang ◽  
Jie Tang Zhu

In order to investigate low temperature mechanical characteristics of HTPB (hydroxy-terminated polybutadiene binder) propellant, uniaxial tensile tests at both the low temperature and room temperature after short storage at low temperature were conducted and SEM (scanning electron microscopy) was used to observe fracture surfaces. The mechanical properties and stress-strain curves were obtained. The experimental results show that matrix tearing and particle brittle fracture occur in low temperature tensile test, but only particle/matrix interface de-wetting in room temperature tensile test. Low temperature stress-strain curves of propellant appear obviously yield region, and the yield degree is involved to the low temperature value. The low temperature mechanical properties such as maximum tensile stress, elastic modulus and strain at maximum stress against temperature are different from room temperature mechanical properties.


2017 ◽  
Vol 265 ◽  
pp. 221-226 ◽  
Author(s):  
E.E. Mastalygina ◽  
A.A. Popov

Binary and ternary composites based on isotactic polypropylene and low-density polyethylene in a wide range of ratios without and with filler content have been investigated. Micron-scale vegetable cellulosic components initiating biological degradation have been used as fillers for polymeric composites. The analysis of stress-strain behaviour of the composites has shown a non-additive dependency of elongation and tensile strength at break on blends composition. Based on this study results the composition and structure of polymeric phase of binary and ternary composites, as well as dimensional parameters of filler particles have a significant impact on stress-strain behaviour of the materials. The main regularities determining materials mechanical properties have been discovered, that, in turn, could be used for predicting service behaviour of composites under investigation.


2019 ◽  
Vol 26 (3) ◽  
pp. 539-548
Author(s):  
Tianbiao Yu ◽  
Yu Zhao ◽  
Xiaoxi Bi ◽  
Boxue Song ◽  
Ying Chen

Purpose The purpose of this paper is to study the influence of the porous structure on the maximum stress and modulus of elasticity of the specimens which are fabricated by rapid prototypes. According to the experimental results, modify the theoretical formula of elastic modulus. Design/methodology/approach The Objet Eden 250 was used to prepare the Vero White photosensitive resin samples with different porosity (ranges from 25 to 65 per cent) and different pore structures. The mechanical properties of different samples were numerically simulated and the formulas of the modulus of elasticity were established. Through the compression test, the performance of the specimen is compared and analyzed, and the theoretical elastic modulus formula is optimized. Findings With the increase of porosity, the maximum stress of honeycomb structure specimens decreases. The maximum stress of the honeycomb structure specimen with circular pore shape is higher than the hexagon cross-section while the hexahedron and octahedron structure are the arms (wall thickness between pores) with a square cross-section. The error comparison between the modulus of elasticity before and after the structure models regression analysis shows that after the regression analysis, the error of theoretical value and the actual value is between 0 and 14 per cent which is lower than the value before the regression analysis which was between 5 and 27 per cent. Originality/value The paper obtains rules of the influence of different porous structures which were fabricated by the Vero White photosensitive resin material on mechanical properties and higher prediction accuracy formula of elastic modulus. The conclusions provide a theoretical basis for Northeastern University, China, to reduce mass and mechanical properties prediction of load-bearing parts.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4224
Author(s):  
Che-Yu Lin ◽  
Jiunn-Horng Kang

Mechanical properties are crucial parameters for scaffold design for bone tissue engineering; therefore, it is important to understand the definitions of the mechanical properties of bones and relevant analysis methods, such that tissue engineers can use this information to properly design the mechanical properties of scaffolds for bone tissue engineering. The main purpose of this article is to provide a review and practical guide to understand and analyze the mechanical properties of compact bone that can be defined and extracted from the stress–strain curve measured using uniaxial tensile test until failure. The typical stress–strain curve of compact bone measured using uniaxial tensile test until failure is a bilinear, monotonically increasing curve. The associated mechanical properties can be obtained by analyzing this bilinear stress–strain curve. In this article, a computer programming code for analyzing the bilinear stress–strain curve of compact bone for quantifying the associated mechanical properties is provided, such that the readers can use this computer code to perform the analysis directly. In addition to being applied to compact bone, the information provided by this article can also be applied to quantify the mechanical properties of any material having a bilinear stress–strain curve, such as a whole bone, some metals and biomaterials. The information provided by this article can be applied by tissue engineers, such that they can have a reference to properly design the mechanical properties of scaffolds for bone tissue engineering. The information can also be applied by researchers in biomechanics and orthopedics to compare the mechanical properties of bones in different physiological or pathological conditions.


2018 ◽  
Vol 14 (1) ◽  
pp. 61
Author(s):  
Kosim Abdurohman ◽  
Aryandi Marta

Vacuum infusion is a manufacturing method to improve mechanical properties of composite. Before apply this in LSU structure, it should be experimented using tensile test to know mechanical properties of the composite. Tensile test is an experimental to know tensile strength, modulus of elasticity, and failure modes of composite. Experimental process of CFRP composite using unidirectional carbon fiber and polyester matrix was done using vacuum infusion technology, strart from specimens preparation until testing steps. Manufacturing results gave the values of composite density and thickness; mass and volume fraction of fiber and matrix materials. Specimens and testing process are refer to ASTM D3039 tensile test standard for composite matrix polymers. The testing results showed 1011.67 MPa ultimate tensile strength, 59074.96 MPa modulus of elasticity, and SGV (long spliting, gage, various) failure mode . ABSTRAKVacuum infusion merupakan salah satu metode manufaktur yang digunakan untuk meningkatkan sifat mekanik komposit. Untuk mengaplikasikan metode ini dalam pembuatan struktur LAPAN Surveillance UAV (LSU), perlu diketahui terlebih dahulu sifat mekanik dari komposit hasil metode ini secara eksperimen. Salah satu eksperimen yang dilakukan yaitu pengujian tarik untuk mendapatkan tensile strength, modulus elastisitas, dan failure mode yang terjadi pada komposit. Eksperimen dilakukan terhadap komposit CFRP menggunakan material serat karbon searah (UD) 0⁰ dan matriks poliester dibuat dengan metode vacuum infusion mulai dari tahap preparasi sampai tahap pengujian. Dari hasil manufaktur didapat nilai densitas dan ketebalan komposit serta fraksi massa dan fraksi volume material penyusun komposit. Spesimen dan proses pengujian mengikuti standar ASTM D3039 yang merupakan standar pengujian tarik untuk komposit dengan matriks polimer. Hasil pengujian menunjukkan nilai ultimate tensile strength 1011,67 MPa, modulus elastisitas 59074,96 MPa, dan failure mode SGV (Long Spliting, Gage, Various).


2018 ◽  
Vol 26 (2) ◽  
pp. 30-34 ◽  
Author(s):  
M. Venu ◽  
T. D. Gunneswara Rao

AbstractThis paper focuses on the mechanical properties and modulus of elasticity of fly ash and GGBS based geopolymer concrete. In this study an 8 molarity concentration of NaOH and alkaline liquid ratio in a ratio of 2.5 was used. This study includes the stress-strain behaviour along with the flexural strength, compressive strength and split tensile strengths for the GPC20, GPC40 and GPC60 grades. Tests were carried out on 150 mm × 150 mm × 150 mm cubes and 100 × 100 × 500 mm prisms and 150 × 300 mm cylindrical geopolymer concrete specimens. The test results not- ed the good mechanical properties and measured stress-strain relations of fly ash and GGBS based geopolymer concrete under ambient curing conditions. The elastic modulus was significantly varied with increases in the grade of the concrete. An equation was proposed to determine the modulus of elasticity based on the compressive strength of the geopolymer concrete.


2007 ◽  
Vol 21 (1) ◽  
pp. 16-21 ◽  
Author(s):  
Sinval Adalberto Rodrigues Junior ◽  
Cesar Henrique Zanchi ◽  
Rodrigo Varella de Carvalho ◽  
Flávio Fernando Demarco

The aim of the study was to test whether the filler composition of resin composites influences their flexural strength and modulus of elasticity. Flexural strength and modulus of elasticity were obtained through a three-point bending test. Twelve bar shaped specimens of 5 commercially available composites - Supreme (3M/ESPE), a universal nanofilled composite; Esthet-X (Dentsply), Z-250 (3M/ESPE), Charisma (Heraeus Kulzer), universal hybrid composites; and Helio Fill (Vigodent), a microfine composite - were confectioned according to the ISO 4049/2000 specifications. The test was performed after a 7-days storage time using a universal test machine with a crosshead speed of 1 mm/min. The filler weight content was determined by the ashing technique. The data obtained on the mechanical properties were submitted to ANOVA and Tukey test (p < 0.05). Pearson's correlation test was used to determine the correlation between the filler content and the mechanical properties. A weak but significant correlation between the mechanical properties evaluated and the filler weight content was observed (p < 0.000). The microfine composite presented the lowest filler weight and the lowest mechanical properties. Statistically different flexural strength and modulus of elasticity results were observed among the universal hybrid composites. The nanofilled composite presented intermediary results. Within the limitations of this in vitro study, it could be concluded that the filler content significantly interfered in the flexural strength and modulus of elasticity of the composites tested.


2016 ◽  
Vol 14 (1) ◽  
pp. 61 ◽  
Author(s):  
Kosim Abdurohman ◽  
Aryandi Marta

Vacuum infusion is a manufacturing method to improve mechanical properties of composite. Before apply this in LSU structure, it should be experimented using tensile test to know mechanical properties of the composite. Tensile test is an experimental to know tensile strength, modulus of elasticity, and failure modes of composite. Experimental process of CFRP composite using unidirectional carbon fiber and polyester matrix was done using vacuum infusion technology, strart from specimens preparation until testing steps. Manufacturing results gave the values of composite density and thickness; mass and volume fraction of fiber and matrix materials. Specimens and testing process are refer to ASTM D3039 tensile test standard for composite matrix polymers. The testing results showed 1011.67 MPa ultimate tensile strength, 59074.96 MPa modulus of elasticity, and SGV (long spliting, gage, various) failure mode . Abstrak Vacuum infusion merupakan salah satu metode manufaktur yang digunakan untuk meningkatkan sifat mekanik komposit. Untuk mengaplikasikan metode ini dalam pembuatan struktur LAPAN Surveillance UAV (LSU), perlu diketahui terlebih dahulu sifat mekanik dari komposit hasil metode ini secara eksperimen. Salah satu eksperimen yang dilakukan yaitu pengujian tarik untuk mendapatkan tensile strength, modulus elastisitas, dan failure mode yang terjadi pada komposit.Eksperimen dilakukan terhadap komposit CFRP menggunakan material serat karbon searah (UD) 0⁰ dan matriks poliester dibuat dengan metode vacuum infusion mulai dari tahap preparasi sampai tahap pengujian. Dari hasil manufaktur didapat nilai densitas dan ketebalan komposit serta fraksi massa dan fraksi volume material penyusun komposit. Spesimen dan proses pengujian mengikuti standar ASTM D3039 yang merupakan standar pengujian tarik untuk komposit dengan matriks polimer. Hasil pengujian menunjukkan nilai ultimate tensile strength 1011,67 MPa, modulus elastisitas 59074,96 MPa, dan failure mode SGV (Long Spliting, Gage, Various).


Sign in / Sign up

Export Citation Format

Share Document