Synthesis and Electrochemical Performance of K-Doped Li4Ti5O12 as Anode Material for Lithium-Ion Batteries

2014 ◽  
Vol 633-634 ◽  
pp. 495-498
Author(s):  
Xiao Bing Huang ◽  
Hong Hui Chen ◽  
Shi Biao Zhou ◽  
Yuan Dao Chen ◽  
Bei Ping Liu ◽  
...  

Spinel Li4-xKxTi5O12(x=0, 0.03) were successfully synthesized by a traditional solid-state method and systematically investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and the charge-discharge test, respectively. The results demonstrated that Li3.97K0.03Ti5O12exhibited much better rate performance in comparsion with Li4Ti5O12. At 0.2 C and 10 C, it delivered a discharge capacity of 173 mAh g-1and 124 mAh g-1respectively, and after 100 cycles at 10 C, 96.1% of its initial capacity was retained.

2013 ◽  
Vol 310 ◽  
pp. 90-94 ◽  
Author(s):  
Xiao Bing Huang ◽  
Hong Hui Chen ◽  
Huang Rong Li ◽  
Qian Peng Yang ◽  
Shi Biao Zhou ◽  
...  

Li2FeSiO4/C and Li1.97Mg0.03FeSiO4/C composites were successfully prepared by a solid-state method. Both samples were systematically investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM), the charge-discharge test and electrochemical impedance spectra measurement, respectively. It was found that the Li1.97Mg0.03FeSiO4/C composite exhibited an excellent rate capability with a discharge capacity of 144mAh g-1 at 0.2C and 97mAh g-1 at 5C, and after 100 cycles at 1 C, 96% of its initial capacity was retained.


2014 ◽  
Vol 644-650 ◽  
pp. 4710-4713
Author(s):  
Xiao Bing Huang ◽  
Jie Ren ◽  
Hao Wang ◽  
Pei Tian Peng ◽  
Shi Qiang Feng ◽  
...  

Li2-xFeSiO4/C (x=0.01, 0.05, 0.1) were successfully synthesized by a traditional solid-state method and systematically investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and the charge-discharge test, respectively. The results demonstrated that Li2-xFeSiO4exhibited the best electrochemical performance among the three as-synthsied samples. it delivered a specific discharge capacity of 142 mAh g-1, 112 mAh g-1at 0.2 C and 2 C, respectively. After 100 cycles at the rate of 1 C, the discharge capacity remained 95.1% of its initial value.


2012 ◽  
Vol 554-556 ◽  
pp. 436-439 ◽  
Author(s):  
An Ping Tang ◽  
Ze Qiang He ◽  
Jie Shen ◽  
Guo Rong Xu

Lithium vanadyl phosphate (β-LiVOPO4) cathode material for lithium ion batteries was prepared via a novel solid state method. The microstructure and electrochemical properties of the sample were characterized by X-ray diffraction, scanning electron microscopy, galvanostatically discharge/discharge and cyclic voltammetry techniques, respectively. X-ray diffraction patterns showed that β-LiVOPO4 has an orthorhombic structure with space group of Pnma. The discharge capacity of LiVOPO4 sample is 89.9 mAh•g-1 in the first cycle, and in the 50th cycle it is 76.2 mAh•g-1 at the current density of 10 mA•g-1 between 3.0-4.5 V. The chemical diffusion coefficient ( ) value determined from CV is about 10-11 cm2 s-1. Experimental results indicate that further efforts are needed to improve electrochemical performances of LiVOPO4 material synthesized by solid state method; however, it has a higher discharge plateau around 3.9 V.


2014 ◽  
Vol 900 ◽  
pp. 242-246 ◽  
Author(s):  
Xing Ling Lei ◽  
Hai Yan Zhang ◽  
Yi Ming Chen ◽  
Wen Guang Wang ◽  
Zi Dong Huang ◽  
...  

LiFePO4/graphene composites were prepared via a simple hydrothermal method. The as-prepared LiFePO4/graphene composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), galvanostatic charge-discharge test, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) tests. The lithium-ion batteries using LiFePO4/graphene composites as cathode material exhibited a discharge capacity of 165 mAh/g, which was 97% of the theoretical capacity of 170 mAh/g.


2016 ◽  
Vol 703 ◽  
pp. 316-320
Author(s):  
Hai Feng Chen ◽  
Jing Ling Hu ◽  
Bing Xu

Using NH4VO3, Bi (NO3)3•5H2O and Co (NO3)2•6H2O as raw materials, Co doped BiVO4 (Co/BiVO4) photocatalysts were successfully prepared by solid state method. And the photo catalytic properties were test in this work. Crystal structures of these samples were characterized by X-ray diffraction (XRD). The Methyl Orange (MO) was simulated as the sewage under the visible light to explorer the influence of the illumination time and the mass of photocatalyst. The visible-light absorption spectrum of BiVO4 was broadening with doping Co. It was found that the Co/BiVO4 had higher photocatalytic activity than pure BiVO4 .The reason of enhanced catalytic effect also had been analyzed and discussed in the article.


2021 ◽  
Vol 19 (11) ◽  
pp. 108-115
Author(s):  
Nihad Ali Shafeek

This research contains preparing the superconducting compound Bi2-xAgxSr2Ca2Cu3O10+δ and studying its structural and electrical characteristics. The samples were prepared using the solid-state method in two stages, and different concentrations of x were (x= 0.2,0.4,0.6,0.8) replaced instead of bismuth Bi. Then, using a hydraulic press 9 ton/cm2 and sintering with a temperature of 850°C, the samples were pressed. Next, x-ray diffraction is used to study the structural properties. The study of these samples was presented in different proportions of x values, where x = 0.4 is the best compensation ratio of x. A critical temperature of 1400C and the Tetragonal structure was got. After that, the effect of laser nidinium _ yak (Nd: YAG laser) was used on the compositional. It was found that the temperature value increased, so we got the best critical temperature, which is 142 0C.


2011 ◽  
Vol 236-238 ◽  
pp. 868-871 ◽  
Author(s):  
Meng Liang Tong ◽  
Xuan Yan Liu

Calcium zincate as an active material in Zn/Ni secondary battery has been successfully synthesized by microwave method. The chemical composition of Ca(OH)2·2Zn(OH)2·2H2O was confirmed by X-ray powder diffraction pattern and weight loss in thermogravimetric analysis.The results of cyclic voltammetry and experimental Zn/Ni battery charge–discharge test showed that the material of calcium zincate had excellent electrochemical performances: a high discharging platform of 1.685 V and a good cycleability, discharge capacity would be 70.0% of initial capacity after circulated 120 times.


Author(s):  
Adelyna Oktavia ◽  
Kurnia Sembiring ◽  
Slamet Priyono

Hospho-material of olivine, LiMnPO4 identified as promising for cathode material generation next Lithium-ion battery and has been successfully synthesized by solid-state method with Li2Co3, 2MnO2, 2NH4H2PO4 as raw material. The influence of initial concentration of precursors at kalsinasi temperatures (400-800 ° C) flows with nitrogen. The purity and composition phase verified by x-ray diffraction analysis (XRD), scanning electron microscopy (SEM), spectroscopy, energy Dispersive x-ray Analysis (EDS), Raman spectra. General investigation shows that there is a correlation between the concentration of precursors, the temperature and the temperature of sintering kalsinasi that can be exploited to design lithium-ion next generation.


2013 ◽  
Vol 591 ◽  
pp. 272-276
Author(s):  
Fang Zhang ◽  
Chao Song ◽  
Ling Li Ma ◽  
Xiao Li Xu ◽  
Zi Fei Peng

Sr2CeO4: Ho3+ was prepared by high-temperature solid-state method. The products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and photo luminescent (PL). The Sr2CeO4:Ho3+ phosphors showed a red emission under the near-ultraviolet excitation (280 nm) and the main emission centered at 475 nm. It has been found that A+ (A+ = Li+, Na+ or K+) codoped Sr2CeO4: Ho3+ phosphors could lead to a remarkable increase of photoluminescence. Luminous intensity was the highest when doping Li+ ions. Investigation indicated that Sr2Ce0.989O4: 0.001Ho3+, 0.01Li+ exhibited the strongest emission. The average particle size was about 6 um. The optimum sintering temperature was 1200 °C and the possible mechanism was also discussed.


2011 ◽  
Vol 412 ◽  
pp. 61-64
Author(s):  
Xiao Bo Wu ◽  
Da Zhi Sun ◽  
Dan Yu Jiang ◽  
Hai Fang Xu ◽  
De Xin Huang ◽  
...  

3Y-TZP powder has been successfully synthesized by gel solid-state method. The structural phases of powder particles were analyzed by X-ray diffraction and the morphology was analyzed by scanning electron microscopy. The average size of grains was 230 nm. The sintering behavior, mechanical properties and microstructure of 3Y-TZP ceramics sintered by this powder were investigated. The experiment results showed that the mechanical properties of ceramics were excellent.


Sign in / Sign up

Export Citation Format

Share Document