Synthesis and Characterization of Li0.97K0.03FePO4/Graphene Composites by Carbonthermal Reduction Method

2014 ◽  
Vol 687-691 ◽  
pp. 4327-4330
Author(s):  
Yan Wang ◽  
Zhe Sheng Feng ◽  
Lu Lin Wang ◽  
Jin Ju Chen ◽  
Zhen Yu He

Li0.97K0.03FePO4 and Li0.97K0.03FePO4/graphene composites were synthesized by carbothermal reduction method using acetylene black as carbon source. The structure and electrochemical properties of the prepared materials were investigated with X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, galvanostatic charge and discharge and electrochemical impedance spectra tests. The results indicated that K doping improves the cyclic stability of samples, the addition of small amounts of graphene results in better electronic properties on sample. Li0.97K0.03FePO4/graphene showed discharge capacity of 158.06 and 90.55 mAh g-1 at 0.1 C and 10 C, respectively. After the 50 cycle test at different rates, the reversible discharge capacity at 0.1 C was 158.58 mAh g-1, indicating the capacity retention ratio of 100.32%.

2013 ◽  
Vol 310 ◽  
pp. 90-94 ◽  
Author(s):  
Xiao Bing Huang ◽  
Hong Hui Chen ◽  
Huang Rong Li ◽  
Qian Peng Yang ◽  
Shi Biao Zhou ◽  
...  

Li2FeSiO4/C and Li1.97Mg0.03FeSiO4/C composites were successfully prepared by a solid-state method. Both samples were systematically investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM), the charge-discharge test and electrochemical impedance spectra measurement, respectively. It was found that the Li1.97Mg0.03FeSiO4/C composite exhibited an excellent rate capability with a discharge capacity of 144mAh g-1 at 0.2C and 97mAh g-1 at 5C, and after 100 cycles at 1 C, 96% of its initial capacity was retained.


2019 ◽  
Vol 12 (03) ◽  
pp. 1950041 ◽  
Author(s):  
Gundu Venkateswarlu ◽  
Devarapaga Madhu ◽  
Jetti Vatsala Rani

Fluorine (F)-doped MoS2 was prepared by F-doping into layered MoS2 via chemical solution process with fluoroboric acid. X-ray photoelectron spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction were applied to conform the effect of F on the structure. The electrochemical performance was investigated by using cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge studies. The F-doped MoS2 as cathode material for rechargeable Mg battery exhibited a good discharge capacity of 55[Formula: see text]mAhg[Formula: see text], with a good rate capability and good cycling stability when compared to pristine B-MoS2. The effective performance of F-doped MoS2 are attributed to the unique structure and synergetic effect between layered MoS2.


2011 ◽  
Vol 391-392 ◽  
pp. 1435-1439
Author(s):  
Tao Dong ◽  
Li Peng Zhang ◽  
Xian Jin Yu ◽  
Zeng Dian Zhao ◽  
Yun Hui Dong

Gradient cathode material of LiNi0.7Co0.15Mn0.15O2 was synthesized by mixing hydroxide co-precipitated precursors with 8% excess LiOH•H2O. Structure and electrochemical properties of the material was characterized by X-ray diffraction (XRD), scanning electronic microscope (SEM), galvanostatic charge-discharge test and electrochemical impedance spectroscopy (EIS). The results indicate that the typical crystal of the material is α-NaFeO2. The particles are formed by 200nm~500nm crystals. The gradient material sintered at 800°C shows the best electrochemical performance, the initial discharge capacity of the material is 164.45mAh•g-1 at 0.2C, its discharge capacity retention of 86% at 2C and with lower electrochemical impedance.


2015 ◽  
Vol 1088 ◽  
pp. 327-331
Author(s):  
Fei Fei Zhao ◽  
Dao Bin Mu ◽  
Xiong Xiong Hou ◽  
Lei Wang ◽  
Yong Huan Ren ◽  
...  

AlF3 and MgF2 were applied to modify the surface of the LiNi1/3Co1/3Mn1/3O2 cathode material. The structural and electrochemical properties of the materials were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), charge–discharge tests and electrochemical impedance spectra (EIS). The results show that the 1 wt.% AlF3 and 1 wt.% MgF2 coated LiNi1/3Co1/3Mn1/3O2 (NCM333) cathode material exhibits an optimized electrochemical performance. It presents an initial capacity of 207.2mAh/g and 169.1mAh/g at 0.2C between 2.8V and 4.7V after charge-discharge 65 cycles. The rate performance is also enhanced because the coating decreases the interface charge transfer impedance.


NANO ◽  
2016 ◽  
Vol 11 (10) ◽  
pp. 1650114 ◽  
Author(s):  
Dan Li ◽  
Jianwei Li ◽  
Caiqin Han ◽  
Xinsheng Zhao ◽  
Haipeng Chu ◽  
...  

Few-layered MoS2 nanostructures were successfully synthesized by a simple hydrothermal method without the addition of any catalysts or surfactants. Their morphology, structure and photocatalytic activity were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, electrochemical impedance spectra and UV-Vis absorption spectroscopy, respectively. These results show that the MoS2 nanostructures synthesized at 180[Formula: see text]C exhibit an optimal visible light photocatalytic activity (99%) in the degradation of Rhodamine B owing to the relatively easier adsorption of pollutants, higher visible light absorption and lower electron–hole pair recombination.


2005 ◽  
Vol 3 (3) ◽  
pp. 358-360 ◽  
Author(s):  
Jia Rong-Li ◽  
Wang Cheng-Yang ◽  
Zhu Bin

Superfine mesocarbon microbead powders (SFMCMBs) as the new supports for platinum electrocatalysts were first investigated. The Pt∕SFMCMB electrocatalysts were prepared by an impregnation-reduction method, with hexachloroplatinic acid as the platinum precursor and formaldehyde as the reducing agent. The catalysts were characterized with x-ray diffraction (XRD), field emission gun transmission electron microscope (TEM), and electrochemical analysis. TEM photos showed the platinum particles were dispersed uniformly on the surface of SFMCMBs and there existed a little aggregation of platinum particles in the Pt∕SFMCMB catalysts. The TEM photos showed the existence of the platinum on the supports where the average platinum particle size were 4-6nm. The electrochemical analysis proved that SFMCMBs are excellent candidates to be used as the support of platinum electrocatalyst for methanol electrochemical oxidation as the potential catalyst candidate for direct methanol fuel cells (DMFCs).


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
YiChao Yan ◽  
Wei Shi ◽  
HongChuan Jiang ◽  
Jie Xiong ◽  
WanLi Zhang ◽  
...  

The redox reaction between Al and metallic oxide has its advantage compared with intermetallic reaction and Al/NiO nanomutlilayers are a promising candidate for enhancing the performance of energetic igniter. Al/NiO nanomutlilayers with different modulation periods are prepared on alumina substrate by direct current (DC) magnetron sputtering. The thicknesses of each period are 250 nm, 500 nm, 750 nm, 1000 nm, and 1500 nm, respectively, and the total thickness is 3 μm. The X-ray diffraction (XRD) and scanning electron microscope (SEM) results of the as-deposited Al/NiO nanomutlilayers show that the NiO films are amorphous and the layered structures are clearly distinguished. The X-ray photoelectron spectroscopy (XPS) demonstrates that the thickness of Al2O3increases on the side of Al monolayer after annealing at 450°C. The thermal diffusion time becomes greater significantly as the amount of thermal boundary conductance across the interfaces increases with relatively smaller modulation period. Differential scanning calorimeter (DSC) curve suggests that the energy release per unit mass is below the theoretical heat of the reaction due to the nonstoichiometric ratio between Al and NiO and the presence of impurities.


2013 ◽  
Vol 873 ◽  
pp. 152-157
Author(s):  
Long Long Chen ◽  
Jun Ming Li ◽  
Xiao Min Gong ◽  
Jian Li

Using a chemically induced transition in an FeCl2 solution, γ-Fe2O3 nanoparticles can be prepared from an amorphous precursor composed of FeOOH and Mg (OH)2. Surface modification by adding ZnCl2 during liquid-phase synthesis was attempted. The magnetization, morphology, crystal structure, and chemical species of as-prepared samples were characterized by vibrating sample magnetometer (VSM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray energy-dispersive spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). The experimental results showed that the surface of the γ-Fe2O3 nanoparticles can be modified by adding ZnCl2 to form composite nanoparticles with a γ-Fe2O3/ZnFe2O4 ferrite core coated with Zn (OH)2 and absorbed FeCl36H2O; this modification can be enhanced by additional NaOH.


2020 ◽  
Author(s):  
Sahar. Mokhtari ◽  
Anthony.W. Wren

AbstractThis study addresses issues with currently used bone adhesives, by producing novel glass based skeletal adhesives through modification of the base glass composition to include copper (Cu) and by characterizing each glass with respect to structural changes. Bioactive glasses have found applications in fields such as orthopedics and dentistry, where they have been utilized for the restoration of bone and teeth. The present work outlines the formation of flexible organic-inorganic polyacrylic acid (PAA) – glass hybrids, commercial forms are known as glass ionomer cements (GICs). Initial stages of this research will involve characterization of the Cu-glasses, significant to evaluate the properties of the resulting adhesives. Scanning electron microscopy (SEM) of annealed Cu glasses indicates the presence of partial crystallization in the glass. The structural analysis of the glass using Raman suggests the formation of CuO nanocrystals on the surface. X-ray diffraction (XRD) pattern and X-ray photoelectron spectroscopy (XPS) further confirmed the formation of crystalline CuO phases on the surface of the annealed Cu-glass. The setting reaction was studied using Fourier transform infrared spectroscopy (ATR-FTIR). The mechanical properties of the Cu containing adhesives exhibited gel viscoelastic behavior and enhanced mechanical properties when compared to the control composition. Compression data indicated the Cu glass adhesives were efficient at energy dissipation due to the reversible interactions between CuO nano particles and PAA polymer chains.


Sign in / Sign up

Export Citation Format

Share Document