Thermal Performance of an Experimental Solar Pond Operating in Winter of Tibet

2013 ◽  
Vol 316-317 ◽  
pp. 13-16
Author(s):  
Shu Yang Xiao ◽  
Bing Li ◽  
Ya Ping Dong ◽  
Qing Fen Meng ◽  
Wu Li

An experimental SGSP was constructed in Tibet and its thermal performance in winter was investigated in this paper. The LCZ temperature observed was no less than 20 oC in winter subfreezing time. The impact of ice layer upon SGSP was analysed briefly as well, it was found that the ice layer showed different impacts on the performance of SGSP depended on its thickness and transparency condition. Several promising measures for the improvement of SGSP operating in winter were also proposed.

2020 ◽  
Vol 92 (3) ◽  
pp. 30901
Author(s):  
Suvanjan Bhattacharyya ◽  
Debraj Sarkar ◽  
Ulavathi Shettar Mahabaleshwar ◽  
Manoj K. Soni ◽  
M. Mohanraj

The current study experimentally investigates the heat transfer augmentation on the novel axial corrugated heat exchanger tube in which the spring tape is introduced. Air (Pr = 0.707) is used as a working fluid. In order to augment the thermohydraulic performance, a corrugated tube with inserts is offered. The experimental study is further extended by varying the important parameters like spring ratio (y = 1.5, 2.0, 2.5) and Reynolds number (Re = 10 000–52 000). The angular pitch between the two neighboring corrugations and the angle of the corrugation is kept constant through the experiments at β = 1200 and α = 600 respectively, while two different corrugations heights (h) are analyzed. While increasing the corrugation height and decreasing the spring ratio, the impact of the swirling effect improves the thermal performance of the system. The maximum thermal performance is obtained when the corrugation height is h = 0.2 and spring ratio y = 1.5. Eventually, correlations for predicting friction factor (f) and Nusselt number (Nu) are developed.


2020 ◽  
Vol 12 (1) ◽  
pp. 01016-1-01016-5
Author(s):  
A. Terfai ◽  
◽  
Y. Chiba ◽  
M. N. Bouaziz ◽  
◽  
...  

2019 ◽  
Vol 88 (2) ◽  
pp. 20902
Author(s):  
O. Achkari ◽  
A. El Fadar

Parabolic trough collector (PTC) is one of the most widespread solar concentration technologies and represents the biggest share of the CSP market; it is currently used in various applications, such as electricity generation, heat production for industrial processes, water desalination in arid regions and industrial cooling. The current paper provides a synopsis of the commonly used sun trackers and investigates the impact of various sun tracking modes on thermal performance of a parabolic trough collector. Two sun-tracking configurations, full automatic and semi-automatic, and a stationary one have numerically been investigated. The simulation results have shown that, under the system conditions (design, operating and weather), the PTC's performance depends strongly on the kind of sun tracking technique and on how this technique is exploited. Furthermore, the current study has proven that there are some optimal semi-automatic configurations that are more efficient than one-axis sun tracking systems. The comparison of the mathematical model used in this paper with the thermal profile of some experimental data available in the literature has shown a good agreement with a remarkably low relative error (2.93%).


2001 ◽  
Author(s):  
Abhay A. Watwe ◽  
Ravi S. Prasher

Abstract Traditional methods of estimating package thermal performance employ numerical modeling using commercially available finite-volume or finite-element tools. Use of these tools requires training and experience in thermal modeling. This methodology restricts the ability of die designers to quickly evaluate the thermal impact of their die architecture due to the added throughput time required to enlist the services of a thermal analyst. This paper describes the development of an easy to use spreadsheet tool, which performs quick-turn numerical evaluations of the impact of non-uniform die heating. The tool employs well-established finite-volume numerical techniques to solve the steady-state, three-dimensional Fourier equation of conduction in the package geometry. Minimal input data is required and the inputs are customized using visual basic pull-down menus to assist die designers who may not be thermal experts. Data showing comparison of the estimates from the spreadsheet tool with that obtained from a conventional analysis using the commercially available finite element code ANSYS™ is also presented.


2012 ◽  
Vol 509 ◽  
pp. 119-122
Author(s):  
Wei Zhou ◽  
Ling Huan Lu ◽  
Zhen Li

The impact of recycled fine aggregate and powder on the mechanics and thermal performance of recycled concrete hollow blocks was discussed in this paper. The results showed that 30% recycled fine aggregate and powder have slight affect on the strength of recycled concrete hollow blocks. But the strength reduced significantly when the replacement is above 50%. The impact of recycled fine aggregate and powder on the performance of concrete hollow blocks with high strength grade is notable . The heat transfer coefficient of recycled concrete hollow blocks with 30% recycled fine aggregate and powder was equivalently to ordinary concrete hollow blocks.


Arsitektura ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 129
Author(s):  
Sri Yuliani ◽  
Wiwik Setyaningsih

<p class="Abstract"><em>The surface temperature of the building material may release a heat load in the micro-environment. The largest building envelope receives the heat load of solar radiation is the roof. The strategic roof position at the top of the building has the opportunity to radiate heat received into the environment. Heat emissions lead to rising temperatures, so it is necessary to lower the temperature in micro-environment. When the heat of the building is not lowered will lead to an increase in the urban heat island (UHI). The objective of the study was to find the relationship between the thermal performance of the roof of the building and the energy efficiency in the high-rise building, in order to establish efficient thermal comfort. The research method uses experimental way in real model which is in Surakarta City, as humid tropical climate area. The result of the study is a comparison of the heat performance of three roofing materials which would later recommend the criteria of energy efficient roof for high buildings.</em><em></em></p>


Author(s):  
Krishna Kota ◽  
Mohamed M. Awad

In this effort, theoretical modeling was employed to understand the impact of flow bypass on the thermal performance of air cooled heat sinks. Fundamental mass and flow energy conservation equations across a longitudinal fin heat sink configuration and the bypass region were applied and a generic parameter, referred as the Flow Bypass Factor (α), was identified from the theoretical solution that mathematically captures the effect of flow bypass as a quantifiable parameter on the junction-to-ambient thermal resistance of the heat sink. From the results obtained, it was found that, at least in the laminar regime, the impact of flow bypass on performance can be neglected for cases when the bypass gap is typically less than 5% of the fin height, and is almost linear at high relative bypass gaps (i.e., usually for bypass gaps that are more than 10–15% of the fin height). It was also found that the heat sink thermal resistance is more sensitive to small bypass gaps and the effect of flow bypass decreases with increasing bypass gap.


Sign in / Sign up

Export Citation Format

Share Document