Experimental Study on Gas Pressure Effects on Gas Desorption Characteristic of Coal Seam

2013 ◽  
Vol 318 ◽  
pp. 367-370 ◽  
Author(s):  
Lin Chao Dai ◽  
Da Yong Lu ◽  
Zhen Liu

To further explore the impact of gas pressure on gas desorption and flowing law, the gas desorption experimental system designed autonomously is used to carry out studies on gas desorption experiment under different gas pressures. By data fitting, the relationship between gas desorption quantity and time is obtained and also established the model for gas desorption. The results show that: the gas desorption quantity curves is "The first half rises sharply, the latter half segment is gently rising and eventually becomes stabilized", and when the gas adsorption equilibrium pressure is the greater, the gas desorption amount is greater. And the formula can describe the gas desorption law well, the correlation coefficient R2 is above 0.97. The study provides an important theory reference to coal and gas outburst prediction, coal seam gas content prediction and its exploitation and utilization.

2015 ◽  
Vol 60 (4) ◽  
pp. 1013-1028 ◽  
Author(s):  
Lei Zhang ◽  
Naj Aziz ◽  
Ting Ren ◽  
Jan Nemcik ◽  
Shihao Tu

Abstract Several mines operating in the Bulli seam of the Sydney Basin in NSW, Australia are experiencing difficulties in reducing gas content within the available drainage lead time in various sections of the coal deposit. Increased density of drainage boreholes has proven to be ineffective, particularly in sections of the coal seam rich in CO2. Plus with the increasing worldwide concern on green house gas reduction and clean energy utilisation, significant attention is paid to develop a more practical and economical method of enhancing the gas recovery from coal seams. A technology based on N2 injection was proposed to flush the Coal Seam Gas (CSG) out of coal and enhance the gas drainage process. In this study, laboratory tests on CO2 and CH4 gas recovery from coal by N2 injection are described and results show that N2 flushing has a significant impact on the CO2 and CH4 desorption and removal from coal. During the flushing stage, it was found that N2 flushing plays a more effective role in reducing adsorbed CH4 than CO2. Comparatively, during the desorption stage, the study shows gas desorption after N2 flushing plays a more effective role in reducing adsorbed CO2 than CH4.


2012 ◽  
Vol 616-618 ◽  
pp. 190-196
Author(s):  
Deng Ke Wang ◽  
Jian Ping Wei ◽  
Le Wei ◽  
Heng Jie Qin

A large number of laboratory experiments on the gas seepage characteristics by the self-developed gas-bearing coal triaxial compression experimental system and conducts the comparative analysis of the similarities and differences of the permeability among CO2, CH4 and N2. The results show that given the condition of constant gas pressure, the permeability of the coal sample decreases with the increase of the confining pressure; under the constant confining pressure, the permeability of the coal sample decreases with the increase of the gas pressure; gases of different adsorbabilities have different permeabilities. The stronger the gas adsorption is, the worse its permeability will be; in the axial loading case, the permeabilities of different gases all reduce firstly and increase afterward, showing the generally V-shaped variation law. The results are of certain theoretical values on the in-depth understanding of the migration law of the gas in coal seams.


2014 ◽  
Vol 556-562 ◽  
pp. 597-602
Author(s):  
Yi Lei ◽  
Wen Bin Wu

Base on the hydraulic fracturing field test in soft coal seam, the rule which the cutting quantity is added and the drilling gas desorption index K1 is decreased, is analyzed from the perspective of physical-mechanical properties and adsorption-desorption law is changed, etc. And gas adsorption and desorption law was analyzed using the theory of two-phase flow, to determine the effect after fracturing coal extraction is improved and the main reason for reducing the outburst.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Tianjun Zhang ◽  
Jiaokun Wu ◽  
Yong Chen ◽  
Hong Ding ◽  
Hongyu Ma ◽  
...  

Stress is one of the main factors influencing coal and gas outbursts. The apparent effects of the crustal stress, the structural stress, and the mining-induced stress increase as the depth of mining increases. At present, there have been few studies of the relationship between the comprehensive analyses of the crustal stress, mining-induced stress, and coal gas. The in situ measurement of the relationship between stress-related behaviors and coal gas under the influence of mining was conducted through experimental analysis of surrounding rock support and coal and gas outburst control and optimization of surrounding rock support materials and system construction. The results showed that the mining-induced stress first increased to a peak value, then gradually decreased, and tended to stabilize as the footage progresses. Stress appears at 96 m ahead due to mining; after 57 m of advancing, there is a large increase until it passes through this area. The stress in front of the working face increases linearly, and the increase range is obviously larger than that of the coal body in a certain range on both sides. The support anchoring force gradually decreased and tended to be stable after rapidly increasing to a maximum value. The deep displacement of the roof increased linearly and tended to be stable after reaching an accumulated displacement which can reach 16-28 mm. The residual gas pressure in front of mining operations decreased rapidly, and beyond 15 m on each side of the roadway, it decreased significantly. The residual gas pressure and gas content were consistent with the gas desorption index of drill cuttings due to the influences of gas predrainage and mining. The stress along the direction of the roadway and the residual gas content, the residual gas pressure, and the gas desorption index of drill cuttings conform to the logarithmic functional relationship. The research results provide a basis for the comprehensive prevention and control of coal and gas outbursts from multiple angles considering stress, coal, and gas.


2019 ◽  
Vol 59 (1) ◽  
pp. 328
Author(s):  
Fengde Zhou ◽  
Glen Fernandes ◽  
Joao Luft ◽  
Kai Ma ◽  
Mahmoud Oraby ◽  
...  

Drilling horizontal wells in low permeability coal seams is a key technology to increase the drainage area of a well, and hence, decrease costs. It’s unavoidable that some parts of the horizontal section will be drilled outside the targeted coal seam due to unforeseen subsurface conditions, such as sub-seismic faulting, seam rolls, basic geosteering tools, drilling practices and limited experiences. Therefore, understanding the impact of horizontal in-seam drilling performance on coal seam gas (CSG) production and remaining gas distribution is an important consideration in drilling and field development plans. This study presents a new workflow to investigate the impact of horizontal in-seam performance on CSG production and gas distribution for coal seams with different porosity, permeability, permeability anisotropy, initial gas content (GC), initial gas saturation and the ratio of in-coal length to in-seam length (RIIL). First, a box model with an area of 2 km × 0.3 km × 6 m was used for conceptual simulations. Reduction indexes of the cumulative gas production at the end of 10 years of simulations were compared. Then, a current Chevron well consisting of a vertical well and two lateral wells, was selected as a case study in which the impact of outside coal drilling on history matching and remaining gas distribution were analysed. Results show that the RIIL plays an increasing role for cases with decreasing permeability or initial gas saturation, while it plays a very similar role for cases with varied porosity, permeability anisotropy and GC. The size and location of outside coal drilling will affect the CSG production and remaining gas distribution.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Kaizhong Zhang ◽  
Qingquan Liu ◽  
Kan Jin ◽  
Liang Wang ◽  
Yuanping Cheng ◽  
...  

In order to determine the controlling factors affecting coalbed gas migration in the Xutuan coal mine, Huaibei Coalfield, China, overlying caprocks with Quaternary and Neogene formation (loose bed), Paleogene formation (Redbed), and coal-bearing strata were investigated via petrography, lithology, and physical properties according to laboratory tests, theoretical analysis, and on-site exploration. Results indicate that the basic properties of coal were not significantly changed whereas the effect of coalbed gas escape was promoted in the presence of Redbed and loose bed. The pore structure analysis shows that Redbed has well-developed pore connectivity than coal-bearing strata (main components are sandstone, siltstone, and mudstone). Also, the diffusion coefficient and permeability of Redbed and loose bed are proved to be a little different than those of sandstone but are much higher than those of mudstone and siltstone. Based on the aforementioned findings, investigation on the sealing mechanism of overlying caprocks on CBM migration was further discussed, interpreting that the thickness, permeation, and diffusion features are crucial factors for sealing capacity of the overlying caprock. Thus, with the simplification on the thickness of overlying strata, a conceptional analysis was carried out to theoretically estimate the sealability of caprocks from surface drilling holes; it appears, though, that the master factor on coalbed methane accumulation is coal-bearing strata instead of Redbed and loose bed with a poor sealability. In this case, the reliability of the evaluation method could be indirectly validated from the on-site gas content data of the actual coal seam to fundamentally reflect the effect of Redbed and loose bed on gas-escaping, and the impact of coal-bearing strata on gas accumulation in the coal seam.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Zengchao Feng ◽  
Chen Wang ◽  
Dong Dong ◽  
Dong Zhao ◽  
Dong Zhou

To study the influence of gas adsorption-desorption on the resistivity of coal, the resistivity changes in conditions of continuous adsorption/desorption and isovolumetric adsorption/desorption were tested by high-precision resistance measurement, and the relationship between coal resistivity and gas content was investigated. The results show that gas adsorption/desorption has obvious effects on the resistivity of coal. Similar behavior was observed both in continuous adsorption/desorption and in isovolumetric adsorption/desorption experiments. The coal resistivity decreased gradually at the very beginning and then tended to stabilize as the gas adsorption capacity increased; in the process of gas desorption, the resistivity demonstrated a linear relationship with gas content. When comparing resistivities for the different adsorption modes, it was found that, for the same gas content in each mode, the resistivity change in the isovolumetric adsorption experiment was more obvious than in the continuous adsorption experiment. Also, the coal resistivity in the isovolumetric experiment differed further from the original figure when the desorption ended. The results are significant for predicting gas content in the coal mining process.


Processes ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 571
Author(s):  
Li ◽  
Nie ◽  
Tian ◽  
Zhao ◽  
Zhang

The diffusion coefficient of gases in coal varies with time. This study aims to develop an unsteady dynamic diffusion (UDD) model based on the decay of diffusion coefficient with time and the change of integral. This study conducted a series of gas desorption and diffusion experiments with three different combinations of particle sizes and gas pressures and compared the diffusion coefficients of the three models. The UDD model exhibited good fitting results, and both the UDD and bidisperse models fitted the experimental data better than the unipore model. In addition, the dynamic diffusion coefficient (DDe) decreased rapidly in the initial stage but gradually decreased to a stable level in the later stage. All the effective diffusion coefficients of the three models negatively correlated with the particle size. In the unipore model, the diffusion coefficient of coal samples with three particle sizes increased with gas pressure. In the bidisperse and UDD models, the diffusion coefficients (Dae, Die, and DDe) of 0.25–0.5 mm and 0.5–1.0 mm coal samples increased with gas pressure. However, DDe and Dae of 1.0–1.25 mm coal samples increased first and then decreased. Furthermore, Die decreased first and then increased, with no sign of significant pressure dependence. Finally, the correlation and significance between the constant and diffusion coefficient in the UDD model was investigated.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiang Wu ◽  
Zhen Yang ◽  
Dongdong Wu

Gas outburst poses a huge threat to the safe production of coal mines. Therefore, the prediction of gas outburst has always been a hot topic for researchers. In recent years, the use of artificial intelligence algorithms for gas outburst prediction has made progress, such as using BP neural network, GA algorithm, and SVM algorithm. Despite these progresses, predicting the gas outburst more accurately and efficiently still remains a great challenge. In this work, an algorithm based on grey relational analysis and SVM using adaptive particle swarm optimization (APSO-SVM) for gas outburst prediction is proposed. Grey relational analysis was used to extract the four most relevant ones from nine gas outburst prediction parameters (geological structure zone distance, coal seam gas content, gas release initial velocity, gas desorption index-K1, drill cuttings volume, coal seam depth, coal seam thickness, coal destruction type, and coal firmness coefficient) to give the needed parameters for SVM model. Higher prediction accuracy was then obtained with the selected parameters composed by coal seam gas content, gas release initial velocity, gas desorption index-K1, and drill cuttings volume. Moreover, adaptive particle swarm optimization (APSO) was used to optimize the penalty factor and kernel parameters of the support vector machine to improve the global search ability and avoid the occurrence of the local optimal solutions. The APSO-SVM model was applied to the prediction of gas outburst in 31004 tunneling face of Xinyuan Coal Mine, Yangquan City, Shanxi Province, China. We further introduced the criteria of accuracy, precision, recall, and F 2 -score to evaluate the prediction results of different models. The results show that, in the gas outburst prediction, the accuracy of the APSO-SVM model is 98.38%, the precision and recall are both 100%, and F 2 -score is 1. Comparative studies confirm that APSO-SVM displayed better performance than SVM and PSO-SVM models for the applied grey relational analysis assisted gas outburst prediction. These obtained results indicate the validity of APSO-SVM model for gas outburst prediction.


Sign in / Sign up

Export Citation Format

Share Document