scholarly journals Influence of Overlying Caprock on Coalbed Methane Migration in the Xutuan Coal Mine, Huaibei Coalfield, China: A Conceptional Analysis on Caprock Sealability

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Kaizhong Zhang ◽  
Qingquan Liu ◽  
Kan Jin ◽  
Liang Wang ◽  
Yuanping Cheng ◽  
...  

In order to determine the controlling factors affecting coalbed gas migration in the Xutuan coal mine, Huaibei Coalfield, China, overlying caprocks with Quaternary and Neogene formation (loose bed), Paleogene formation (Redbed), and coal-bearing strata were investigated via petrography, lithology, and physical properties according to laboratory tests, theoretical analysis, and on-site exploration. Results indicate that the basic properties of coal were not significantly changed whereas the effect of coalbed gas escape was promoted in the presence of Redbed and loose bed. The pore structure analysis shows that Redbed has well-developed pore connectivity than coal-bearing strata (main components are sandstone, siltstone, and mudstone). Also, the diffusion coefficient and permeability of Redbed and loose bed are proved to be a little different than those of sandstone but are much higher than those of mudstone and siltstone. Based on the aforementioned findings, investigation on the sealing mechanism of overlying caprocks on CBM migration was further discussed, interpreting that the thickness, permeation, and diffusion features are crucial factors for sealing capacity of the overlying caprock. Thus, with the simplification on the thickness of overlying strata, a conceptional analysis was carried out to theoretically estimate the sealability of caprocks from surface drilling holes; it appears, though, that the master factor on coalbed methane accumulation is coal-bearing strata instead of Redbed and loose bed with a poor sealability. In this case, the reliability of the evaluation method could be indirectly validated from the on-site gas content data of the actual coal seam to fundamentally reflect the effect of Redbed and loose bed on gas-escaping, and the impact of coal-bearing strata on gas accumulation in the coal seam.

2009 ◽  
Vol 27 (5) ◽  
pp. 307-332 ◽  
Author(s):  
Xiaodong Zhang ◽  
Yanhao Liu ◽  
Geoff Wang ◽  
Hao Liu

Jiaozuo coalfield is located in the northwest of Henan province, China, and close to the Southern Qinshui coal basin, the most successfully commercial CBM resource developed area in China. The No. II1 coal seam is the main economic coal seam in Jiaozuo coalfield and its average thickness exceeds 5.36m. The maximum reflectance of vitrinite (RO,max) of the No. II1 coal across the Jiaozuo is between 3.16% and 4.78%. The coalbody structure of the No. II1 coal seam changes greatly in different part and can be generally divided into 1∼3 sub-layers. The micropores in the No.II1 coal seam is the major pores, secondly are transitional pores, and then less macropores and mesopores. The No. II1 coal seam has stronger adsorption, and the reservoir natural permeability has an evident heterogeneity vary from 0.0001 to 83.71mD. High permeability region is often near fault structure or the boundary of fault block. The CBM genetic type is homologous thermal cracking gas of humic coal with high matunity. Gas content with the burial depth of 163∼1070m varies very greatly from 4.65 to 45.75m3/t, with an average value of 18.3m3/t, and gradually increases from northeast to southwest. According to the latest evaluation for CBM resource in Jiaozuo coalfield, the existing total in-place CBM resources in the No. II1 coal seam with the depth of shallower than 2000 m are close to 1.2 × 1012m3, most of them mainly distribute in the depth of 1000 ∼ 1500 m. The existing total in-place CBM resources is dominated by the inferred CBM resource reserves (more than 70%), which distribute the undrilled places with few coal geological knowledge and deeper than 1000m. The resource concentration of the No. II1 coal seam in Jiaozuo coalfield is in the range of (0.513–3.478)x108 m3/km2, with an average value of 1.805×108 m3/km2. Based on the CBM resource investigation and reservoir evaluation, the most prospective target zones for CBM production in Jiaozuo coalfield include Guhanshan coal mine, Jiulishan coal mine and the west part of Qiangnan coal district.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Lei Zhang ◽  
Ting Ren ◽  
Naj Aziz ◽  
Cun Zhang

This paper presents the results of an evaluation study of gas drainability in the Bulli seam in the Southern Coalfield of the Sydney Basin, NSW, Australia, where the coal seam gas (CSG) contains a high proportion of carbon dioxide (CO2). Historically the gas drainability in some particular areas of this coal seam was found to be particularly poor, which posed a significant challenge to gas predrainage. As a result, a large volume of greenhouse gases were released to the atmosphere during mining of the coal seam. Furthermore, the high gas content associated with the CO2-rich composition also increased the risks of coal and gas outburst incidents, affecting the safety of mining. After systematic literature review of evaluation factors affecting gas drainability, this evaluation study comprehensively analyzed the main critical factors, including the geology of the area, the coal cleat system, coal microstructure, coal permeability, coal sorption capacity, gas content, and gas composition. Field geology analysis showed geological variations that affected the variations of the coal cleat system and CO2 content in the coal seam. Scanning Electron Microscope (SEM) tests showed the tight and less-porous features in hard-to-drain coal samples. The colliery gas database analysis was carried out to assess the impact of gas content and gas composition on the drainability of the coal seam. Laboratory tests showed that the coal seam had a permeability of less than 1 mD and also showed that the coal seam was highly undersaturated, especially with high CO2 content.


Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1404
Author(s):  
Pablo Cienfuegos-Suárez ◽  
Efrén García-Ordiales ◽  
Diego Alonso-Fernández ◽  
Jorge Enrique Soto-Yen

New technological development and a best knowledge of the basin allow to have justified expectation to find coalbed methane reserves. Measurements of gas content in unexploited coal seams are made in order to estimate the CBM could revive the economic interest of the Asturian Central Coal Basin (ACCB). According to first estimations based on the studies accomplished, the minimum resources of coalbed methane in the whole of the Asturian Central Coal Basin are in the order of 25,000 Mm3 and the gas content of the coal seams range from 6 m3 to 14 m3/t. The introduction should briefly place the study in a broad context and define the purpose of the work and its significance.


2012 ◽  
Vol 170-173 ◽  
pp. 428-433 ◽  
Author(s):  
Dong Ming Guo ◽  
Hua Jun Xue ◽  
Li Juan Li ◽  
Jun Long Xue ◽  
Gui He Li

Rock burst is a common mine dynamic phenomenon in the world, and the research on bursting liability of coal and rock is the foundation of rock burst’s prevention and treatment. This paper has a research on bursting liability of coal and rock of 11-2 coal seam which is the main coal seam of Zhuji coal mine, and through the research and analysis of coal seam burst energy index(bursting energy index, elastic strain energy index, duration of dynamic fracture) and rock seam burst energy index(bending energy index), this paper given that seam and rock in deep mining section of Zhuji coal mine has bursting liability, put forward a series of countermeasures such as the previous water injection, hole-drilling method, blasting distressing to the coal seam with the impact disaster for deep mining in Zhuji coal mine.


2013 ◽  
Vol 671-674 ◽  
pp. 1144-1149
Author(s):  
Le Tuan Cheng ◽  
Jia Lin Zhang ◽  
Zheng Sheng Zou ◽  
Qing Bo Li

B1 coal seam located at -550m level in Liangbei Coal Mine is a typical "three-soft" seam. The coal roadway with a depth of 610-750m lies under the critical softening depth of the roadway, and its support difficulty coefficient is 1.5-2.0. The coal has poor air permeability, high gas content and high gas pressure, so danger degree of the gas outburst is relatively strong. The coal seam was destroyed in a disastrous state by more than 100 boreholes for gas outburst prevention during the excavation. This results in the difficulty in the roadway support. Engineering geological characteristics of the coal roadway at 11 mining area are introduced. Based on the engineering geo-mechanics method, the reasons of deformation and failure of the coal roadway are analyzed. In view of problems in excavation and support, as well as the type of the coal roadway deformation mechanism, the borehole parameters are optimized for the gas outburst prevention, and bolt-net-cable coupling support with high convex steel-belt is used to control the coal roadway stability at 11 mining area. Practice shows that the effect is fine.


Author(s):  
Qiqing Wang ◽  
Wenping Li

Water inrush from coal floor constitutes one of the main disasters in mine construction and mine production, which always brings high risks and losses to the coal mine safe production. As the mining depth of coal fields in North China gradually increased, especially in the complicated structural region, the threat posed by limestone karstic water of coal floor to the safe stoping of mines has become increasingly prominent. In this paper, the Taoyuan coalmine was taken as an example, for which, the directional borehole grouting technology was utilized to reinforce the coal seam floor prior to mining. Also, the factors affecting the grouting effect were analyzed. These were the geological structure, the crustal stress and the range of slurry diffusion. The layout principle of grouting drilling was put forward and the directional drilling structure was designed. The water level observations in the end hole indicated that the target stratum was accurate and reliable. The effect of grouting was validated through the audio frequency electric perspective method and the holedrilling in the track trough. The results demonstrated that the effect of grouting in third limestone and the rock stratum above the third limestone of coal seam floor was apparent. Simultaneously, no water inrush occurred following the actual mining of the working face, which further demonstrated that the grouting reinforcement effect was apparent. The research findings were of high significance for the prevention and control of floor water disaster and water conservation in deep complex structural areas.


2021 ◽  
Author(s):  
Shokofe Rahimi ◽  
Majid Ataee-pour ◽  
Hasan Madani

Abstract It is very difficult to predict the emission of coal gas before the extraction, because it depends on various geological, geographical and operational factors. Gas content is a very important parameter for assessing gas emission in the coal seam during and after the extraction. Large amounts of gas released during the mining cause concern about adequate airflow for the ventilation and worker safety. Hence, the performance of the ventilation system is very important in an underground mine. In this paper, the gas content uncertainty in a coal seam is first investigated using the central data of 64 exploratory boreholes. After identifying the important coal seams in terms of gas emission, the variogram modeling for gas content was performed to define the distribution. Consecutive simulations were run for the random evaluation of gas content. Then, a method was proposed to predict gas emission based on the Monte Carlo random simulation method. In order to improve the reliability and precision of gas emission prediction, various factors affecting the gas emission were investigated and the main factors determining the gas emission were identified based on a sensitivity analysis on the mine data. This method produced relative and average errors of 2% and 0.57%, respectively. The results showed that the proposed model is accurate enough to determine the amount of emitted gas and ventilation. In addition, the predicted value was basically consistent with the actual value and the gas emission prediction method based on the uncertainty theory is reliable.


2020 ◽  
Vol 38 (1-2) ◽  
pp. 3-23 ◽  
Author(s):  
Yang Zhao ◽  
Xiaodong Zhang ◽  
Shuo Zhang ◽  
Jiaosheng Yang ◽  
Xianzhong Li ◽  
...  

Adsorption and desorption of coalbed methane are generally at a dynamic equilibrium state under the undisturbed coal reservoir. However, as the reservoir pressure drops to a certain value during the extraction of coalbed methane, the equilibrium state is destroyed and thus more coalbed methane desorbs and escapes from coal to wellbore. Here the corresponding bottom-hole fluid pressure is called initial gas production pressure (IGPP) in the development practice of coalbed methane wells. This paper, which has taken Changzhi-Anze block in the central-southern part of Qinshui basin as the study object, addresses the distribution characteristic and control factors of IGPP of coalbed methane wells and then explores the key factors affecting IGPP using grey correlation analysis theory. The results indicate that IGPP varies from 1.09 MPa to 6.57 MPa, showing a distribution law with high in the middle and low in the west and east of the study area, which presents a similar distribution characteristic with burial depth, thickness, coal rank, gas content, original reservoir pressure, and in-situ stress. Further, through grey correlation analysis, it concludes that the correlation degrees of control factors affecting IGPP of coalbed methane wells in the descending order are decline rate of working fluid level, water yield before gas production, reservoir pressure, coal thickness, coal rank, minimum horizontal principal stress, burial depth, and gas content. Among these factors, engineering factors, including decline rate of working fluid level and water yield before gas production, present a key controlling effect, because they can determine the smooth migration pathway directly during initial water production. And another key factor, original reservoir pressure also builds strong and positive correlation with IGPP under the interaction of other geology and reservoir factors, revealing the capability of gas desorption and the transmission of pressure drops.


2012 ◽  
Vol 616-618 ◽  
pp. 234-239 ◽  
Author(s):  
Jun Qian Li ◽  
Da Meng Liu ◽  
Yan Bin Yao ◽  
Yi Dong Cai ◽  
Xiao Qain Guo ◽  
...  

For finding out favorable coalbed methane development districts, the evaluation of geological controls of CBM distribution and accumulation is essential during CBM exploration and development. In this paper, the No. 3 coal seam in the Zhengzhuang coal zone located at southern Qinshui Basin, China, was selected as a focus for comprehensively evaluating geological controls of CBM. The findings of this study are: (1) Coalbed gas contents increase with increasing mudstone roof thickness (ranging from 0-9 m), and will always be as high as 20 m3/t in the coal reservoirs with the mudstone roof thickness greater than about 9 m. (2) The weak transmission and stagnant coalbed water are favorable for CBM accumulation in coal reservoirs resulting from the typical hydraulic preservation of CBM. (3) High coalbed gas contents will commonly occur in vitrinite-rich and low-ash yield coals with high CH4 adsorptive capacity.


2021 ◽  
Vol 101 (1) ◽  
pp. 18-25
Author(s):  
S.B. Imanbaeva ◽  
◽  
A.D. Mausymbaeva ◽  
V.M. Yurov ◽  
V.S. Portnov ◽  
...  

The article deals with the issues of gas content of the most thick and stable D6 coal seam in the Tentek region. This complex structure seam is dangerous in underground mining for gas and dust outbursts, it consists of coal packs separated by interlayers of mudstones, while the lower layer 0.5-1.5 m thick is very soft, has a strong shear disturbance and is most saturated with methane. Extraction of coalbed methane is a necessary process to ensure the safety of mining operations, to reduce its emissions into the atmosphere, and to utilize it as a fuel and a product for obtaining synthetic materials. The regularity of changes in the particle size distribution of the upper thick pack and the lower thin pack indicates the difference in small coal particles in them, while there are much more of them in the lower layer therefore, the specific surface is larger, which is an important factor of the adsorption processes intensity in the accumulation of methane, and during the gas drainage from the seam. The activation energy of methane from carbohydrate has been determined. A quadratic relationship between methane gas evolution and its initial concentration has been shown. In carbohydrate, it depends on the energy of external forces. A complex relationship has been established between the gas pressure in the coal seam and its concentration and characteristics of the «coal-methanenatural moisture» system. Regularities of changing the methane content of the coal seam depending on its fracturing formed due to the effect of the energy of destruction and the energy appearing with increasing the area of a crack in the coal, have been obtained. The effect of the coal mineral composition on the gas content has been shown.


Sign in / Sign up

Export Citation Format

Share Document