Simulation for Composite Forming Infusion from both inside and outside at same Time

2013 ◽  
Vol 329 ◽  
pp. 153-156
Author(s):  
Wei Xiao Du ◽  
Zhong De Shan ◽  
Feng Liu

Impregnation quality is vital to the whole composite. To improve it a new approach-infusion from both inside and outside at same time is supposed. Some comparison simulation studies, based on PAM-RTM software, are performed in this paper about the new composite forming method and traditional infusion method including flow behavior and filling time. Filling time via the two methods are compared, and the following results are obtained-It takes less time to fill the mold with infusion from both inside and outside at same time than traditional one; higher fiber volume fraction is, more favorable the new forming method is. The new infusion method is proved to be an effective and novel forming method about parts with high-thickness or high fiber content in composite forming area. The results will contribute to researches on the whole composite forming and bring prospect to provide more usages of three dimensional composites in high rank field.

2018 ◽  
Vol 52 (24) ◽  
pp. 3289-3297 ◽  
Author(s):  
Benoît Cosson

Tracking the variability of natural fiber-based fabrics properties, such as local areal weight, fiber volume fraction, and therefore permeability, is crucial to optimize the parts processing of the bio-composites. This paper aims at developing a cost-effective and efficient optical method in order to predict the permeability of flax fabrics used in liquid composite molding processes. This method using an LCD monitor as light source and a reflex camera as a measurement device is based on light transmission measurement through fabric thickness. The raw data given by the camera are gray scale maps, transformed into areal weight maps. FEM software based on levelset method is finally used to highlight the influence of the local variability of the fiber volume fraction, and of the related fabrics porosity and permeability on the mold filling time. The proposed method can be directly implemented on the manufacturing line of the composites. It can be used to optimize, part-to-part, the resin consumption by predicting the resin flow through perform. Interestingly, this novel optical method is auto-calibrated and does not depend on picture resolution.


2001 ◽  
Author(s):  
Jay R. Sayre ◽  
Alfred C. Loos

Abstract Vacuum assisted resin transfer molding (VARTM) has shown potential to significantly reduce the manufacturing cost of high-performance aerospace composite structures. In this investigation, high fiber volume fraction, triaxially braided preforms with through-the-thickness stitching were successfully resin infiltrated by the VARTM process. The preforms, resin infiltrated with three different resin systems, produced cured composites that were fully wet-out and void free. A three-dimensional finite element model was used to simulation resin infusion into the preforms. The predicted flow patterns agreed well with the flow pattern observed during the infiltration process. The total infiltration times calculated using the model compared well with the measured times.


2011 ◽  
Vol 46 (13) ◽  
pp. 1617-1631 ◽  
Author(s):  
P Wang ◽  
S Drapier ◽  
J Molimard ◽  
A Vautrin ◽  
JC Minni

Liquid resin infusion (LRI) processes are promising manufacturing routes to produce large, thick, or complex structural parts. They are based on the resin flow induced, across its thickness, by a pressure applied onto a preform/resin stacking. However, both thickness and fiber volume fraction of the final piece are not well controlled since they result from complex mechanisms which drive the transient mechanical equilibrium leading to the final geometrical configuration. In order to optimize both design and manufacturing parameters, but also to monitor the LRI process, an isothermal numerical model has been developed which describes the mechanical interaction between the deformations of the porous medium and the resin flow during infusion. 1 , 2 With this numerical model, it is possible to investigate the LRI process of classical industrial part shapes. To validate the numerical model, first in 2D, and to improve the knowledge of the LRI process, this study details a comparison between numerical simulations and an experimental study of a plate infusion test carried out by LRI process under industrial conditions. From the numerical prediction, the filling time, the resin mass and the thickness of the preform can be determined. On another hand, the resin flow and the preform response can be monitored by experimental methods during the filling stage. One key issue of this research study is to highlight the changes in major process parameters during the resin infusion stage, such as the temperature of the preform and resin, and the variations of both thickness and fiber volume fraction of the preform. Moreover, this numerical/experimental approach is the best way to improve our knowledge on the resin infusion processes, and finally, to develop simulation tools for the design of advanced composite parts.


2014 ◽  
Vol 936 ◽  
pp. 154-163
Author(s):  
Rui Xu ◽  
Jun Kui Mao ◽  
Jing Yu Zhang ◽  
De Cang Lou ◽  
Wen Guo

The prediction of fiber reinforced ceramic is one of the most important procedure when investigating the application of ceramic composite. Numerical simulations were applied and a novel model was brought out in this paper. Firstly, four different models for predicting thermal conductivities of unidirectional fiber reinforced materials were compared, which include the Rayleigh,LN,ST and TE model,. It shows that Rayleigh model and LN model have good precision only in low fiber volume content cases. There existed big differences between the experimental and numerical results if predicted the high fiber volume content with either these four models. Then a novel model based on LN model was studied with the correction of the representative volume element method. Further comparison results indicate that the error can be reduced as 55.6% with this novel model. At the same time, the longitudinal (k11) and transverse (k22) thermal conductivities predicted by the novel model were also analyzed. It was found thatk11had a linear relationship with fiber volume fraction and thermal conductivity ratio (p). Butk22had a nonlinear relationship with fiber volume fraction, which increased much greatly when fiber volume fraction increasing at high fiber volume fraction andp>1.


2010 ◽  
Vol 452-453 ◽  
pp. 117-120
Author(s):  
Zhen Qing Wang ◽  
Xiao Qiang Wang ◽  
Ji Feng Zhang ◽  
Song Zhou

A method for the parametric generation of the transversal cross-section microstructure model of unidirectional long-fiber reinforced composite (LFRC) is presented in this paper. Meanwhile, both the random distribution of the fibers and high fiber volume fraction are considered in the algorithm. The fiber distribution in the cross-section is generated through random movements of the fibers from their initial regular square arrangement. Furthermore, cohesive zone element is introduced into modeling the interphase between the fiber and the matrix. All these processes are carried out by the secondary development of the finite element codes (ABAQUS) via Python language programming. Based on the model generated, micromechanical finite element analysis (FEA) is performed to predict the damage initiation and subsequent evolution of the composites. The results show that this technique is capable of capturing the random distribution nature of these composites even for high fiber volume fraction. Moreover, the results prove that a good agreement with the experimental results is found.


Sign in / Sign up

Export Citation Format

Share Document