The Investigation of Tool Wear in High Speed Cutting INCONEL718

2010 ◽  
Vol 33 ◽  
pp. 347-350
Author(s):  
J. Zhou ◽  
R.D. Han

As the main method of high efficiency machining Ni-based superalloy, high-speed cutting can not but intensify the cutting-tool wear. So, it is very necessary to find the rule of cutting-tool wear in high-speed cutting superalloy, especially, the effect of cutting-tool wear on the cutting force, cutting temperature and surface roughness of machined workpiece. In this paper, the PCDTiAlN cemented carbide insert is used in the experiment, the value of cutting-tool wear and the corresponding cutting force, cutting temperature and surface roughness of machined workpiece is measured. It indicates that the cutting force, cutting temperature and surface roughness of machined workpiece is changed corresponding the cutting-tool wear changes, and cutting-tool is serious, for example, the crater wear expands quickly; the boundary wear is obvious.

2014 ◽  
Vol 800-801 ◽  
pp. 102-106
Author(s):  
Jun Zhou ◽  
Ming Pu Liu ◽  
Hong Qi Sun

As the main method of high efficiency cutting Ni-based superalloy, high-speed cutting can not but intensify the cutting-tool wear for the high cutting force and cutting temperature. So, it is very necessary to study the process of cutting-tool wear and wear mechanism, especially, the effect of cutting-tool wear on the cutting force, cutting temperature and surface roughness of machined workpiece. In this paper, investigation of tool wear in high-speed cutting is proposed, the PCDTiAlN carbide insert is used in the experiment, the cutting-tool wear and the corresponding cutting force, cutting temperature and surface roughness of machined workpiece is detected. It indicates that the cutting force, cutting temperature and surface roughness of machined workpiece is changed corresponding the cutting-tool wear,the wear process of coated tool include the coated material wears and base material wears,the wear mechanism is complex. Key word: superalloy, high-speed cutting, tool wear, wear form ; .


2011 ◽  
Vol 314-316 ◽  
pp. 1258-1261
Author(s):  
Lian Qing Ji ◽  
Kun Liu

The history and application of the FEA are briefly presented in this paper. Several key technologies such as the building of material model, the establishment of the chip - tool friction model as well as meshing are described. Taking the high-speed cutting of titanium alloy (Ti - 10V - 2Fe - 3Al) as an example , reasonable cutting tools parameters are determined by simulating the influences of cutting temperature, cutting force on the tools parameters using FEA.


2016 ◽  
Vol 693 ◽  
pp. 1129-1134
Author(s):  
Zhao Ju Zhu ◽  
Jie Sun ◽  
Lai Xiao Lu

A series of research on the interactions among tool wear, cutting force and cutting vibration were conducted through high speed milling experiment in this paper, which objected the titanium alloy as difficult-to-cut materials. The results showed that the increasing of tool wear led to enlarging the cutting force and cutting vibration; and vice versa, the increasing of cutting force and cutting vibration aggravated the tool wear in the process of machining. Besides, the variation trend of tool wear with cutting was similar to the trend of cutting force, while the variation trend between cutting vibration and tool wear was different. Especially in the sharply cutting tool wear stage, the influence of tool wear on cutting vibration became more complicated.


2014 ◽  
Vol 565 ◽  
pp. 46-52
Author(s):  
Kious Mecheri ◽  
Benhorma Hadj Aissa ◽  
Ameur Aissa ◽  
Hadjadj Abdechafik

The wear of cutting tool degrades the quality of the product in the manufacturing processes. The on line monitoring of the cutting tool wear level is very necessary to prevent the deterioration of the quality of machining. Unfortunately there is not a direct manner to measure the cutting tool wear on line. Consequently we must adopt an indirect method where wear will be estimated from the measurement of one or more physical parameters appearing during the machining process such as the cutting force, the vibrations, or the acoustic emission etc.... In this work, a neural network system is elaborated in order to estimate the flank wear from the cutting force measurement and the cutting conditions


2006 ◽  
Vol 315-316 ◽  
pp. 805-808 ◽  
Author(s):  
J.L. Ren ◽  
S. Lu ◽  
J.J. Ren ◽  
S.D. Gong

This paper analyzes the changes of cutting force, cutting temperature, and cutting-tool wear in the process of precision cutting. All these factors are considered in the test on GCr12, Cr12 and 45 steels. This test uses the sub-dry cutting method with green-air cooling and a little additive. Furthermore, it discusses the feasibility of sub-dry cutting on the basis of a comparison with other cutting methods


2021 ◽  
Author(s):  
Hüseyin Gürbüz ◽  
Şehmus Baday

Abstract Although Inconel 718 is an important material for modern aircraft and aerospace, it is a kind material, which is known to have low machinability. Especially, while these types of materials are machined, high cutting temperatures, BUE on cutting tool, high cutting forces and work hardening occur. Therefore, in recent years, instead of producing new cutting tools that can withstand these difficult conditions, cryogenic process, which is a heat treatment method to increase the wear resistance and hardness of the cutting tool, has been applied. In this experimental study, feed force, surface roughness, vibration, cutting tool wear, hardness and abrasive wear values that occurred as a result of milling of Inconel 718 material by means of cryogenically treated and untreated cutting tools were investigated. Three different cutting speeds (35-45-55 m/min) and three different feed rates (0.02-0.03-0.04 mm/tooth) at constant depth of cut (0.2 mm) were used as cutting parameters in the experiments. As a result of the experiments, lower feed forces, surface roughness, vibration and cutting tool wear were obtained with cryogenically treated cutting tools. As the feed rate and cutting speed were increased, it was seen that surface roughness, vibration and feed force values increased. At the end of the experiments, it was established that there was a significant relation between vibration and surface roughness. However, there appeared an inverse proportion between abrasive wear and hardness values. While BUE did not occur during cryogenically treated cutting tools, it was observed that BUE occurred in cutting tools which were not cryogenically treated.


2016 ◽  
Vol 836-837 ◽  
pp. 20-28
Author(s):  
Li Min Shi ◽  
Cheng Yang ◽  
Qi Jun Li

Titanium alloy Ti6Al4V has poor machinability, which leads to high unit cutting force and cutting temperature, rapid tool failure. In this study, the effect of the cutting speed, feed rate and cooling condition on cutting force and cutting temperature is critically analysed by turning experiment. At the same time, the relationship is established among tool wear, cutting force and cutting temperature. This investigation has shown that cutting speed is the decisive factor which increasing cutting force and cutting temperature. In the process of turning, tool wear results in high amounts of heat and mechanical stress, which leads to serious tool wear. The Minimal Quantity Lubrication reduces the frictional condition at the chip-tool, decreases cutting force and cutting temperature, and delays the tool failure.


2013 ◽  
Vol 579-580 ◽  
pp. 202-207
Author(s):  
Guo He Li ◽  
Hou Jun Qi ◽  
Bing Yan

For the high speed cutting process of hardened 45 steel (45HRC), a finite element simulation of cutting deformation, cutting force and cutting temperature is finished with the large general finite element software ABAQUS. Through the building of geometry model, material model and heat conduction model, also the determination of boundary conditions, separation rule and friction condition, a thermal mechanical coupling finite element model of high speed cutting for hardened 45 steel is built. The serrated chip, cutting force and cutting temperature can be predicted. The comparison of experiment and simulation shows the validity of the model. The influence of cutting parameters on cutting process is investigated by the simulation under different cutting depthes and rake angles. The results show that as the increase of rake angle, the segment degree, cutting force and cutting temperature decrease. But the segment degree, also the cutting force and cutting temperature increase with the increase of cutting depth. This study is useful for the selection of cutting parameters of hardened steel.


2008 ◽  
Vol 2 (5) ◽  
pp. 348-353 ◽  
Author(s):  
Yoji Umezaki ◽  
◽  
Yasutsune Ariura ◽  
Toshio Suzuki ◽  
Ryohei Ishimaru ◽  
...  

The hobbing finish of hard gear teeth such as case-hardened gears is anticipated for practical use in high efficiency production. We studied wear and finished surface properties in cutting tests using a cubic boron nitride (cBN) hob cutter in high-speed cutting at 900 m/min of case-hardened steel. The cBN content in tip ingredients is related to wear, and tips high in cBN content are superior in wear resistance. The high thermal conductivity of cBN tips helps transfer cutting temperature heat to chips, melting and adhering them to the relief surface. Flaking may occur on the cutting edge but new chipping does not occur although chipping may exist after grinding. Finished surface roughness is influenced by horning on the cutting edge. Round horning leads to a smooth surface. High-speed finishing with cBN-tipped hobs is analyzed in view of cBN tip grinding and finished surface properties, in addition to wear properties.


Sign in / Sign up

Export Citation Format

Share Document