Simulation of Machining of AISI1045 Based on Thermodynamical Constitutive Equation

2013 ◽  
Vol 333-335 ◽  
pp. 1988-1992
Author(s):  
Fang Shao ◽  
Xue Yan ◽  
Yu Ting Wang ◽  
Li Jing Zou

In this paper a finite element analysis (FEA) of machining for AISI1045 is presented. In particular, the thermodynamical constitutive equation (T-C-E) in FEA is applied for both workpiece material and tool material. Cutting temperature and tool wear depth are predicted. The comparison between the predicted and experimental cutting temperature and tool wear depth are presented and discussed. The results indicated that a good prediction accuracy of both principal cutting temperature and tool wear depth can be achieved by the method of FEA with thermodynamical constitutive equation.

2015 ◽  
Vol 751 ◽  
pp. 273-277
Author(s):  
Fang Shao ◽  
Li Hua Xiao ◽  
Yu Ting Wang

In this paper a finite element analysis (FEA) of machining for AISI1045 is presented. In particular, the thermodynamical constitutive equation (T-C-E) in FEA is applied for both workpiece material and tool material. Cutting temperature and tool wear depth are predicted. The comparison between the predicted and experimental cutting temperature and tool wear depth are presented and discussed. The results indicated that a good prediction accuracy of both principal cutting temperature and tool wear depth can be achieved by the method of FEA with thermodynamical constitutive equation.


2013 ◽  
Vol 631-632 ◽  
pp. 681-685
Author(s):  
Fang Shao ◽  
Fa Qing Li ◽  
Hai Ying Zhang ◽  
Xuan Gao

Aero-engine alloys (also as known as superalloys)are known as difficult-to-machine materials, especially at higher cutting speeds, due to their several inherent properties such as low thermal conductivity and their high reactivity with cutting tool materials. In this paper a finite element analysis (FEA) of machining for Incoloy907 is presented. In particular, the thermodynamical constitutitve equation(T-C-E) in FEA is applied for both workpiece material and tool material. Cutting temperature and cutting force are predicted. The comparison between the predicted and experimental cutting temperature and cutting force are presented and discussed. The results indicated that a good prediction accuracy of both principal cutting temperature and cutting force can be achieved by the method of FEA with thermodynamical constitutitve equation.


2013 ◽  
Vol 634-638 ◽  
pp. 1790-1793
Author(s):  
Fang Shao ◽  
Hai Ying Zhang ◽  
Zhi Jun Fan

Aero-engine alloys (also as known as superalloys)are known as difficult-to-machine materials, especially at higher cutting speeds, due to their several inherent properties such as low thermal conductivity and their high reactivity with cutting tool materials. In this paper a finite element analysis (FEA) of machining for Incoloy907 is presented. In particular, the thermodynamical constitutitve equation(T-C-E) in FEA is applied for both workpiece material and tool material. Cutting temperature and cutting force are predicted. The comparison between the predicted and experimental cutting temperature and cutting force are presented and discussed. The results indicated that a good prediction accuracy of both principal cutting temperature and cutting force can be achieved by the method of FEA with thermodynamical constitutitve equation.


2014 ◽  
Vol 800-801 ◽  
pp. 374-379
Author(s):  
Fang Shao ◽  
Yu Ting Wang ◽  
Li Jing Zou ◽  
Xian Ming Zhang ◽  
Bin Ji

Aero-engine alloys (also as known as superalloys) are known as difficult-to-machine materials, especially at higher cutting speeds, due to their several inherent properties such as low thermal conductivity and their high reactivity with cutting tool materials. In this paper a finite element analysis (FEA) of machining for Incoloy907 is presented. In particular, the thermodynamical constitutitve equation (T-C-E) in FEA is applied for both workpiece material and tool material. Cutting temperature and cutting force are predicted. The comparison between the predicted and experimental cutting temperature and cutting force are presented and discussed. The results indicated that a good prediction accuracy of both principal cutting temperature and cutting force can be achieved by the method of FEA with thermodynamical constitutitve equation. Keywords: Incoloy907,Simulation, Thermodynamical constitutitve equation


Author(s):  
Aruna Prabha Kolluri ◽  
Srinivasa Prasad Balla ◽  
Satya Prasad Paruchuru

Abstract The 3D Finite element method (FEM) is an efficient tool to predict the variables in the cutting process, which is otherwise challenging to obtain with the experimental methods alone. The present study combines both experimental findings and finite element simulation outcomes to investigate the effect of tool material on output process variables, such as vibrations, cutting temperature distribution and tool wear mechanism. Machining of popular aerospace materials like Ti-6Al-4V and Al7075 turned with coated and uncoated tools are part of the investigation. The authors choose the orthogonal test, measured vibrations and cutting temperatures and used FE simulations to carry out the subsequent validations. This study includes the influence of the predicted heat flux and temperature distribution on the tool wear mechanism. The main aim of this study is to investigate the performance quality of uncoated and coated carbide tools along with its thermal aspects. Comparison of experiment and simulation outcomes shows good agreement with a maximum error of 9.02%. It has been noted that the increase of cutting temperature is proportional to its cutting speed. As the cutting speed increases, it is observed that vibration parameter and flank wear value also increases. Overall, coated carbide turning insert tool is the best method for metal turning with higher rotational speeds of the spindle.


2009 ◽  
Vol 69-70 ◽  
pp. 306-310
Author(s):  
Fu Gang Yan ◽  
Cai Xu Yue ◽  
Xian Li Liu ◽  
Yu Fu Li ◽  
Shu Yi Ji

Tool wear plays an important role in cutting process research. It affects the quality of machined surface and cutting parameter to a great extent, such as cutting force, cutting temperature and cutting quiver. In order to predict tool wear in hard cutting process by using FEM method, the character of tool wear during cutting process is presented firstly, and Usui’s tool wear rate model is introduced. Then the FEM model for steady state cutting process using Abaqus is established. FEM model describes the workpiece material characteristic accurately for the process of PCBN tool cutting GCr15 by adoptiving Johnson-Cook constitutive model. Simulation results of steady cutting process offer foundation to simulate tool wear.


2010 ◽  
Vol 44-47 ◽  
pp. 425-429
Author(s):  
Sheng Yu Liu ◽  
Jian Ying Guo

The heat generation caused by tool-chip friction and chip deformation strongly influences the tool wear and tool life in metal cutting processes. The focus of this paper is on the effect of tool-chip on cutting temperature field. A series of ¬finite element simulations have been performed, in which a modifi¬ed Coulomb friction law is used to model the friction along tool–chip interface. A tool rake angle ranging from 10° to 45°, a inclination angle ranging from 0° to 20°, and a friction coefficient ranging from 0.1 to 0.6 have been considered in simulations. The results of these simulations show that the maximum cutting temperature increases with the increasing of tool-chip friction coefficient at different rake angle and inclination angle. The form of tool wear mainly appears as crater wear when the friction coefficient is less than 0.5, and the cutting edge tends to split when the friction coefficient is larger than 0.6.


2016 ◽  
Vol 836-837 ◽  
pp. 402-407
Author(s):  
Rui Tao Peng ◽  
Jing Li ◽  
Xin Zi Tang ◽  
Zhuan Zhou

In high speed machining superalloys processes, tool wear is strongly influenced by the cutting temperature and contact stresses. Finite element analysis of machining can be used as a supplementary to the physical experiment, this paper provides investigations in 2D and 3D finite element modeling and simulation of prestressed cutting for GH4169 superalloy, a tool wear model for the specified tool and workpiece pair is developed based on the Usui's wear model, furthermore, tool temperature, wear rate and nodal displacement on the face of tool in prestressed cutting of superalloy is analyzed under various prestress condition and cutting parameters, and Python language is adopted to modify the Abaqus code used to allow tool wear calculation and tool geometry updating. The results of the simulation indicate that the tool wear rate increases with the increase of cutting time, and the influence of the prestress to tool wear in prestressed cutting process of shaft part is unremarkable.


2006 ◽  
Vol 315-316 ◽  
pp. 334-338 ◽  
Author(s):  
S.J. Dai ◽  
Dong Hui Wen ◽  
Ju Long Yuan

The wear pattern and mechanism during continuous hard turning GCr15 hardened bearing steel with BZN8200 PCBN cutting tool was studied. Experimental results showed that the main wear pattern is crater wear in rake face and mechanical wear in flank face, the main wear mechanism is made-up with adhesive, oxidization and diffusive wear. The adhesive wear is generated by melt workpiece material flows with binder material of PCBN tool during initial cutting, oxidative wear is derived by cutting temperature and pressure of cutting zone when the flank wear increase after initial cutting, diffusive wear phenomenon is the absolute mechanism with the diffusive effect between workpiece and tool material in final cutting time.


Sign in / Sign up

Export Citation Format

Share Document