Duty Ratio Thresholds for Regular Transmission at Human Tissue of Near-Infrared Square-Wave Pulse

2013 ◽  
Vol 333-335 ◽  
pp. 555-558
Author(s):  
Jian Wang ◽  
Shuo Guo Li

In order to understand the transmission mechanism at human tissue of near-infrared square-wave pulse (NIRSP), an experimental study of the duty ratio threshold for regular transmission at the fingertip and palm of human hand by NIRSP was carried out by using a couple of simple transmitting and receiving device with tunable duty ratios, and also the light emitting diodes (LED) both at the wavelengths of 850 nm and 940 nm. The thresholds were determined by measuring the waveforms of the changed voltages of NIRSP receiving system as a measurement of the transmission at human tissue. When the receiving waveforms were taken on the certain behavior as the emitting waveforms, the duty ratio threshold for regular transmission at human tissue of NIRSP was observed. The experimental results show that the duty ratio is an important index for the transmission at human tissue of NIRSP. And the duty ratio thresholds for regular transmission both at the fingertip and palm of NIRSP at the wavelength of 850 nm and 940 nm have been given.

2020 ◽  
Author(s):  
Alex Stafford ◽  
Dowon Ahn ◽  
Emily Raulerson ◽  
Kun-You Chung ◽  
Kaihong Sun ◽  
...  

Driving rapid polymerizations with visible to near-infrared (NIR) light will enable nascent technologies in the emerging fields of bio- and composite-printing. However, current photopolymerization strategies are limited by long reaction times, high light intensities, and/or large catalyst loadings. Improving efficiency remains elusive without a comprehensive, mechanistic evaluation of photocatalysis to better understand how composition relates to polymerization metrics. With this objective in mind, a series of methine- and aza-bridged boron dipyrromethene (BODIPY) derivatives were synthesized and systematically characterized to elucidate key structure-property relationships that facilitate efficient photopolymerization driven by visible to NIR light. For both BODIPY scaffolds, halogenation was shown as a general method to increase polymerization rate, quantitatively characterized using a custom real-time infrared spectroscopy setup. Furthermore, a combination of steady-state emission quenching experiments, electronic structure calculations, and ultrafast transient absorption revealed that efficient intersystem crossing to the lowest excited triplet state upon halogenation was a key mechanistic step to achieving rapid photopolymerization reactions. Unprecedented polymerization rates were achieved with extremely low light intensities (< 1 mW/cm<sup>2</sup>) and catalyst loadings (< 50 μM), exemplified by reaction completion within 60 seconds of irradiation using green, red, and NIR light-emitting diodes.


2021 ◽  
Vol 9 (36) ◽  
pp. 12068-12072
Author(s):  
Wentao Li ◽  
Jiaxiang Liu ◽  
Baowen Wang ◽  
Siyu Hou ◽  
Xingqiang Lü ◽  
...  

Based on geometrical isomerisation of [Ir(C^N1)(C^N2)((N^O))]-tris-heteroleptic Ir(iii)-complexes, the augmented transition dipole transition (TMD) with a preferential horizontal orientation, which is beneficial for their NIR-phosphorescence, is reported.


Author(s):  
Xue Zhou ◽  
Jinmeng Xiang ◽  
Jiming Zheng ◽  
Xiaoqi Zhao ◽  
Hao Suo ◽  
...  

Near-infrared (NIR) phosphor-converted light-emitting diodes (pc-LEDs) light source have great potential in non-destructive detection, promoting plant growth and night vision applications, while the discovery of a broad-band NIR phosphor still...


2021 ◽  
pp. 2100636
Author(s):  
Xiaoxiao Xu ◽  
Ke Xiao ◽  
Guozhi Hou ◽  
Yangyi Zhang ◽  
Ting Zhu ◽  
...  

2019 ◽  
Vol 28 (12) ◽  
pp. 128504 ◽  
Author(s):  
Haochen Liu ◽  
Huaying Zhong ◽  
Fankai Zheng ◽  
Yue Xie ◽  
Depeng Li ◽  
...  

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yiyue Zhang ◽  
Masoumeh Keshavarz ◽  
Elke Debroye ◽  
Eduard Fron ◽  
Miriam Candelaria Rodríguez González ◽  
...  

Abstract Lead halide perovskites have attracted tremendous attention in photovoltaics due to their impressive optoelectronic properties. However, the poor stability of perovskite-based devices remains a bottleneck for further commercial development. Two-dimensional perovskites have great potential in optoelectronic devices, as they are much more stable than their three-dimensional counterparts and rapidly catching up in performance. Herein, we demonstrate high-quality two-dimensional novel perovskite thin films with alternating cations in the interlayer space. This innovative perovskite provides highly stable semiconductor thin films for efficient near-infrared light-emitting diodes (LEDs). Highly efficient LEDs with tunable emission wavelengths from 680 to 770 nm along with excellent operational stability are demonstrated by varying the thickness of the interlayer spacer cation. Furthermore, the best-performing device exhibits an external quantum efficiency of 3.4% at a high current density (J) of 249 mA/cm2 and remains above 2.5% for a J up to 720 mA cm−2, leading to a high radiance of 77.5 W/Sr m2 when driven at 6 V. The same device also shows impressive operational stability, retaining almost 80% of its initial performance after operating at 20 mA/cm2 for 350 min. This work provides fundamental evidence that this novel alternating interlayer cation 2D perovskite can be a promising and stable photonic emitter.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Mingming Jiang ◽  
Fupeng Zhang ◽  
Kai Tang ◽  
Peng Wan ◽  
Caixia Kan

Achieving electrically-driven exciton-polaritons has drawn substantial attention toward developing ultralow-threshold coherent light sources, containing polariton laser devices and high-performance light-emitting diodes (LEDs). In this work, we demonstrate an electrically driven...


Sign in / Sign up

Export Citation Format

Share Document