High-Accuracy Locomotion Control Method for Automatic Docking between Mobile Self-Reconfigurable Microrobots

2013 ◽  
Vol 347-350 ◽  
pp. 143-147 ◽  
Author(s):  
Da Wei Zhang ◽  
Ling Mao ◽  
Xiao Ning Tang ◽  
Zhen Bo Li ◽  
Jia Pin Chen

A mobile self-reconfigurable microrobot actuated by MEMS-based electromagnetic micromotors is presented. Normal stepping control methods for electromagnetic micromotor are introduced. To improve the locomotion accuracy of the microrobot and the efficiency of automatic docking between them more, a Changeable Virtual Winding Method (CVWM) for high-accuracy microstepping control is developed. Experimental results demonstrate the feasibility of the concept.

Author(s):  
Fuhua Li ◽  
Tiemin Li ◽  
Yao Jiang ◽  
Fengchun Li

Ball screw drives are widely used in machine tools to provide accurate linear motion. Elastic deformation is one of the major error sources for ball screw drives in achieving high accuracy motion, and changes greatly when velocity varies. The influence of velocity on the elastic deformation can be estimated and it can be compensated by means of dynamic modeling and servo control method. This paper presents a dynamic model considering torque transmission between the ball screw and the nut. And stiffness is identified by a method of combining theoretical calculation and experimental tests on a constructed test bench, which has two novel symmetrical loading mechanisms. In order to analyze the influence of moving velocity on the elastic deformation, simulation and experiments are conducted when two trajectories which have velocity jumps are input. And the simulated elastic deformations are compared with experimental results to evaluate the accuracy of the model. The results show that the simulated results fit the experimental results with high accuracy. The relationship between the elastic deformation of ball screw drives and the velocity is linear based on the experimental results. Then the simulation results are used to compensate the elastic deformation based on the feed-forward compensation method. The results show that the differences between the actual compensation values and actual elastic deformation are small and most of the elastic deformation of the ball screw drives can be compensated. Therefore, the proposed dynamic model and compensation method can be used to improve the tracking accuracy of ball screw drives.


2011 ◽  
Vol 314-316 ◽  
pp. 837-841
Author(s):  
Ling Ling ◽  
Yuan Sheng Zeng

Through compassion of relative merits of the existing two control methods of straighten anti-curve line and chord line measure for cold-formed profiles, a three-pivot chord angle control method of non-endpoint measurement was proposed in this paper, and its feasibility was proved by using mathematical deduction. Using mapping method, the forming of profiles can be controlled by the only one set of orderly array chord angles and chord lines obtained by a spline curve of profiles, and meanwhile, the length of automation feedstock in forming process of profiles was explored. The present research achievements can provide a good theoretical basis for the further application on controlling profile forming with the chord angle measurement.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2595
Author(s):  
Balakrishnan Ramalingam ◽  
Abdullah Aamir Hayat ◽  
Mohan Rajesh Elara ◽  
Braulio Félix Gómez ◽  
Lim Yi ◽  
...  

The pavement inspection task, which mainly includes crack and garbage detection, is essential and carried out frequently. The human-based or dedicated system approach for inspection can be easily carried out by integrating with the pavement sweeping machines. This work proposes a deep learning-based pavement inspection framework for self-reconfigurable robot named Panthera. Semantic segmentation framework SegNet was adopted to segment the pavement region from other objects. Deep Convolutional Neural Network (DCNN) based object detection is used to detect and localize pavement defects and garbage. Furthermore, Mobile Mapping System (MMS) was adopted for the geotagging of the defects. The proposed system was implemented and tested with the Panthera robot having NVIDIA GPU cards. The experimental results showed that the proposed technique identifies the pavement defects and litters or garbage detection with high accuracy. The experimental results on the crack and garbage detection are presented. It is found that the proposed technique is suitable for deployment in real-time for garbage detection and, eventually, sweeping or cleaning tasks.


Author(s):  
Wolf Schulze ◽  
Maurizio Zajadatz ◽  
Michael Suriyah ◽  
Thomas Leibfried

AbstractA test bed for the evaluation of novel control methods of inverters for renewable power generation is presented. The behavior of grid-following and grid-forming control in a test scenario is studied and compared.Using a real-time capable control platform with a cycle time of 50 µs, control methods developed with Matlab/Simulink can be implemented. For simplicity, a three-phase 4‑quadrant voltage amplifier is used instead of an inverter. Thus, the use of modulation and switched power semiconductors can be avoided. In order to show a realistic behavior of a grid-side filter, passive components can be automatically connected as L‑, LC- or LCL-filter. The test bed has a nominal active power of 43.6 kW and a nominal voltage of 400 V.As state-of-the-art grid-following control method, a current control in the d/q-system is implemented in the test bed. A virtual synchronous machine, the Synchronverter, is used as grid-forming control method. In combination with a frequency-variable grid emulation, the behavior of both control methods is studied in the event of a load connection in an island grid environment.


Robotica ◽  
1995 ◽  
Vol 13 (6) ◽  
pp. 591-598 ◽  
Author(s):  
Yagmur Denizhan

SummaryIn disassembly tasks, due to the large variety of objects and the different positions and orientations in which they appear, the disassembly trajectories supplied on-line by a human operator or an automatic recognition system can contain large errors. The classical compliant control methods turn out to be insufficient to eliminate sticking which is due to these errors. This paper presents a compliant control method for disassembly of non-elastic parts in non-elastic environments which adopts the trajectories according to realised motion. In case of sticking a new direction of motion is searched for until the manipulated part is set into motion.


2014 ◽  
Vol 989-994 ◽  
pp. 3105-3109
Author(s):  
Xiao Bo Liu ◽  
Xiao Feng Wei ◽  
Xiao Dong Yuan ◽  
Wei Ni

This paper deals with the design and theoretical analysis on a novel vertical lift machine which can vertically lift above 700 kg load up to 3.2 meters above the floor and located the load with high accuracy of position and orientation. Firstly the design model based on the installment demands of line-replaceable units (LRUs) is constructed. Then theoretical analysis including the number of degree of freedom of the lift machine, the inverse kinematic, the control principle, the lift platform pose error and the precise pose control method are conducted in the article. The validity of the design model and the effectiveness of the precise pose control system are confirmed by experiments using a prototype lift machine.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Davide Dardari ◽  
Nicoló Decarli ◽  
Anna Guerra ◽  
Ashraf Al-Rimawi ◽  
Víctor Marín Puchades ◽  
...  

In this paper, an ultrawideband localization system to improve the cyclists’ safety is presented. The architectural solutions proposed consist of tags placed on bikes, whose positions have to be estimated, and anchors, acting as reference nodes, located at intersections and/or on vehicles. The peculiarities of the localization system in terms of accuracy and cost enable its adoption with enhanced risk assessment units situated on the infrastructure/vehicle, depending on the architecture chosen, as well as real-time warning to the road users. Experimental results reveal that the localization error, in both static and dynamic conditions, is below 50 cm in most of the cases.


Robotica ◽  
2010 ◽  
Vol 29 (3) ◽  
pp. 461-470 ◽  
Author(s):  
Levent Gümüşel ◽  
Nurhan Gürsel Özmen

SUMMARYIn this study, modelling and control of a two-link robot manipulator whose first link is rigid and the second one is flexible is considered for both land and underwater conditions. Governing equations of the systems are derived from Hamilton's Principle and differential eigenvalue problem. A computer program is developed to solve non-linear ordinary differential equations defining the system dynamics by using Runge–Kutta algorithm. The response of the system is evaluated and compared by applying classical control methods; proportional control and proportional + derivative (PD) control and an intelligent technique; integral augmented fuzzy control method. Modelling of drag torques applied to the manipulators moving horizontally under the water is presented. The study confirmed the success of the proposed integral augmented fuzzy control laws as well as classical control methods to drive flexible robots in a wide range of working envelope without overshoot compared to the classical controls.


2013 ◽  
Vol 722 ◽  
pp. 447-453
Author(s):  
Xiao Zhong Zhou

The cut tobacco transporting is the absolutely necessarily important tache, whether the transportation process stability is a direct impact on production quality and manufacturing standards. The wind system is adopted by most tobacco companies because of it caused least disruptive of the cut tobacco structure and the pipe network layout of system is flexible, but the wind system is greater influence by itself, different control methods are caused greater difference of process indicators, for example essence and spice ingredients, moisture proportion and smoke flavor. Based on the above reasons, so we need to design the control method of wind system necessarily, in addition we must checkout the control accuracy opportunely, so that it is satisfied by the actual working conditions.


2021 ◽  
Vol 11 (3) ◽  
pp. 1079
Author(s):  
Xianglong Wan ◽  
Jiaxin Ma ◽  
Yichi Zhang ◽  
Takahiro Endo ◽  
Fumitoshi Matsuno

In this paper, we propose two control methods for driving a power-assisted cart made for walking assistance for the elderly. The optimal assistance ratio (OAR) and disturbance observer-based (DOB) methods properly adjust the motor output of the cart with high operational efficiency in response to changes in the environment. Healthy subjects walked with the cart on several road surfaces under various conditions, and the experimental results indicate the high operational efficiency of the two proposed methods. Meanwhile, their drawbacks are also discussed herein. The two methods can be used separately or combined according to the application. The OAR method is more suitable for indoor use, while the DOB method is applicable for outdoor applications. Combining these two methods could overcome the mentioned drawbacks.


Sign in / Sign up

Export Citation Format

Share Document