Detecting App-DDoS Attacks Based on Marking Access and d-SVDD

2013 ◽  
Vol 347-350 ◽  
pp. 3734-3739 ◽  
Author(s):  
Jin Ling Li ◽  
Bin Qiang Wang

In order to enhance the extensibility of current attack feature extracted and detection means for App-DDoS(Application Layer Distributed Denial of Service, App-DDoS) attacks, a novel feature extracted method based on marking access and a new detection algorithm named d-SVDD are proposed. After expressing kinds of App-DDoS attacks as characteristic vectors by access marked strategy and feature extracted strategy, d-SVDD algorithm is used for secondary classification and detection of pre-set area around decision boundary based on SVDD. It is proved by experiments that the proposed feature extracted and detection means can realize effective detection for kinds of App-DDoS attacks, both have satisfying time, space and extensibility performance.

Author(s):  
Amit Sharma

Distributed Denial of Service attacks are significant dangers these days over web applications and web administrations. These assaults pushing ahead towards application layer to procure furthermore, squander most extreme CPU cycles. By asking for assets from web benefits in gigantic sum utilizing quick fire of solicitations, assailant robotized programs use all the capacity of handling of single server application or circulated environment application. The periods of the plan execution is client conduct checking and identification. In to beginning with stage by social affair the data of client conduct and computing individual user’s trust score will happen and Entropy of a similar client will be ascertained. HTTP Unbearable Load King (HULK) attacks are also evaluated. In light of first stage, in recognition stage, variety in entropy will be watched and malevolent clients will be recognized. Rate limiter is additionally acquainted with stop or downsize serving the noxious clients. This paper introduces the FAÇADE layer for discovery also, hindering the unapproved client from assaulting the framework.


2019 ◽  
Vol 9 (21) ◽  
pp. 4633 ◽  
Author(s):  
Jian Zhang ◽  
Qidi Liang ◽  
Rui Jiang ◽  
Xi Li

In recent years, distributed denial of service (DDoS) attacks have increasingly shown the trend of multiattack vector composites, which has significantly improved the concealment and success rate of DDoS attacks. Therefore, improving the ubiquitous detection capability of DDoS attacks and accurately and quickly identifying DDoS attack traffic play an important role in later attack mitigation. This paper proposes a method to efficiently detect and identify multivector DDoS attacks. The detection algorithm is applicable to known and unknown DDoS attacks.


2019 ◽  
Vol 63 (7) ◽  
pp. 983-994 ◽  
Author(s):  
Muhammad Asad ◽  
Muhammad Asim ◽  
Talha Javed ◽  
Mirza O Beg ◽  
Hasan Mujtaba ◽  
...  

Abstract At the advent of advanced wireless technology and contemporary computing paradigms, Distributed Denial of Service (DDoS) attacks on Web-based services have not only increased exponentially in number, but also in the degree of sophistication; hence the need for detecting these attacks within the ocean of communication packets is extremely important. DDoS attacks were initially projected toward the network and transport layers. Over the years, attackers have shifted their offensive strategies toward the application layer. The application layer attacks are potentially more detrimental and stealthier because of the attack traffic and the benign traffic flows being indistinguishable. The distributed nature of these attacks is difficult to combat as they may affect tangible computing resources apart from network bandwidth consumption. In addition, smart devices connected to the Internet can be infected and used as botnets to launch DDoS attacks. In this paper, we propose a novel deep neural network-based detection mechanism that uses feed-forward back-propagation for accurately discovering multiple application layer DDoS attacks. The proposed neural network architecture can identify and use the most relevant high level features of packet flows with an accuracy of 98% on the state-of-the-art dataset containing various forms of DDoS attacks.


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3820
Author(s):  
Abdul Ghafar Jaafar ◽  
Saiful Adli Ismail ◽  
Mohd Shahidan Abdullah ◽  
Nazri Kama ◽  
Azri Azmi ◽  
...  

Application Layer Distributed Denial of Service (DDoS) attacks are very challenging to detect. The shortfall at the application layer allows formation of HTTP DDoS as the request headers are not compulsory to be attached in an HTTP request. Furthermore, the header is editable, thus providing an attacker with the advantage to execute HTTP DDoS as it contains almost similar request header that can emulate a genuine client request. To the best of the authors’ knowledge, there are no recent studies that provide forged request headers pattern with the execution of the current HTTP DDoS attack scripts. Besides that, the current dataset for HTTP DDoS is not publicly available which leads to complexity for researchers to disclose false headers, causing them to rely on old dataset rather than more current attack patterns. Hence, this study conducted an analysis to disclose forged request headers patterns created by HTTP DDoS. The results of this study successfully disclose eight forged request headers patterns constituted by HTTP DDoS. The analysis was executed by using actual machines and eight real attack scripts which are capable of overwhelming a web server in a minimal duration. The request headers patterns were explained supported by a critical analysis to provide the outcome of this paper.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5047
Author(s):  
Haomin Wang ◽  
Wei Li

Software-defined networking (SDN) has emerged in recent years as a form of Internet architecture. Its scalability, dynamics, and programmability simplify the traditional Internet structure. This architecture realizes centralized management by separating the control plane and the data-forwarding plane of the network. However, due to this feature, SDN is more vulnerable to attacks than traditional networks and can cause the entire network to collapse. DDoS attacks, also known as distributed denial-of-service attacks, are the most aggressive of all attacks. These attacks generate many packets (or requests) and ultimately overwhelm the target system, causing it to crash. In this article, we designed a hybrid neural network DDosTC structure, combining efficient and scalable transformers and a convolutional neural network (CNN) to detect distributed denial-of-service (DDoS) attacks on SDN, tested on the latest dataset, CICDDoS2019. For better verification, several experiments were conducted by dividing the dataset and comparisons were made with the latest deep learning detection algorithm applied in the field of DDoS intrusion detection. The experimental results show that the average AUC of DDosTC is 2.52% higher than the current optimal model and that DDosTC is more successful than the current optimal model in terms of average accuracy, average recall, and F1 score.


In a network environment, Distributed Denial of Service (DDoS) attacks eemploys a network or server is unavailable to its normal users. Application-layer Distributed Denial of Service (App-DDoS) attacks are serious issues for the webserver itself. The multitude and variety of such attacks and defense approaches are overwhelming. This paper here follows, we analyze the different defense mechanisms for application-layer DDoS attacks and proposes a new approach to defend using machine learning.


2018 ◽  
Vol 7 (4) ◽  
pp. 113 ◽  
Author(s):  
Subhi R. M. Zeebaree ◽  
Karzan H. Sharif ◽  
Roshna M. Mohammed Amin

Currently distributed denial of service (DDoS) is the most sever attack that effect on the internet convenience. The main goal of these attacks is to prevent normal users from accessing the internet services such as web servers. However the more challenge and difficult types to detect is application layer DDoS attacks because of using legitimate client to create connection with victims. In this paper we give a review on application layer DDoS attacks defense or detection mechanisms. Furthermore, we summarize several experimental approaches on detection techniques of application layer DDoS attacks. The main goal of this paper is to get a clear view and detailed summary of the recent algorithms, methods and techniques presented to tackle these serious types of attacks.


Author(s):  
Silvia Bravo ◽  
David Mauricio

Distributed Denial of Service (DDoS) attacks are a threat to the security of red. In recent years, these attacks have been directed especially towards the application layer. This phenomenon is mainly due to the large number of existing tools for the generation of this type of attack. The highest detection rate achieved by a method in the application capacity is 98.5%. Therefore, the problem of detecting DDoS attacks persists. In this work an alternative of detection based on the dynamism of the web user is proposed. To do this, evaluate the user's characteristics, mouse functions and right click. For the evaluation, a data set of 11055 requests was used, from which the characteristics were extracted and entered into a classification algorithm. To that end, it can be applied once in Java for the classification of real users and DDoS attacks. The results showed that the evaluated characteristics achieved an efficiency of 100%. Therefore, it is concluded that these characteristics show the dynamism of the user and can be used in a detection method of DDoS attacks.


2022 ◽  
Vol 9 (2) ◽  
pp. 109-118
Author(s):  
Chaminda Tennakoon ◽  
◽  
Subha Fernando ◽  

Distributed denial of service (DDoS) attacks is one of the serious threats in the domain of cybersecurity where it affects the availability of online services by disrupting access to its legitimate users. The consequences of such attacks could be millions of dollars in worth since all of the online services are relying on high availability. The magnitude of DDoS attacks is ever increasing as attackers are smart enough to innovate their attacking strategies to expose vulnerabilities in the intrusion detection models or mitigation mechanisms. The history of DDoS attacks reflects that network and transport layers of the OSI model were the initial target of the attackers, but the recent history from the cybersecurity domain proves that the attacking momentum has shifted toward the application layer of the OSI model which presents a high degree of difficulty distinguishing the attack and benign traffics that make the combat against application-layer DDoS attack a sophisticated task. Striding for high accuracy with high DDoS classification recall is key for any DDoS detection mechanism to keep the reliability and trustworthiness of such a system. In this paper, a deep learning approach for application-layer DDoS detection is proposed by using an autoencoder to perform the feature selection and Deep neural networks to perform the attack classification. A popular benchmark dataset CIC DoS 2017 is selected by extracting the most appealing features from the packet flows. The proposed model has achieved an accuracy of 99.83% with a detection rate of 99.84% while maintaining the false-negative rate of 0.17%, which has the heights accuracy rate among the literature reviewed so far.


Sign in / Sign up

Export Citation Format

Share Document