Study on the Bearing Capacity of Slime Friction Pile Based on the Double-Sheared Theory

2013 ◽  
Vol 353-356 ◽  
pp. 1005-1010
Author(s):  
Xiang Qiu Wang ◽  
Wen Tao Yang

The bearing capacity of slime friction pile based on the Mohr-Coulombs strength criterion couldnt make full use of the potential strengths ability of rock-soil. But the double shear unified strength theory can depict really the bearing characteristics of rock-soil because it can consider the effect of intermediate principal stress comprehensively. On this condition, based on the Mindlins displacement solution and the double shear unified strength theory, a calculated formula of bearing capacity was proposed for the slime friction pile, and then the distribution regularities of lateral friction-resistance force for the slime friction pile were discussed.

2008 ◽  
Vol 22 (31n32) ◽  
pp. 5637-5642 ◽  
Author(s):  
HONGJIAN LIAO ◽  
ZONGYUAN MA ◽  
LIJUN SU

At present, the failure criteria used in calculating the ultimate bearing capacity of soil slope are the Tresca and Mohr-Coulomb criteria. But the results are conservative and the potential strength of soil mass cannot be utilized sufficiently because these two criteria do not take into account the effect of the intermediate principal stress. In this paper the unified strength theory was used to analyze the ultimate bearing capacity of soil slope. The formula for calculating the ultimate bearing capacity of soil slope using the unified strength theory was established. At the end, a case history was analyzed and it indicated that the result of the unified strength theory is larger than that of the Mohr-Coulomb criterion. This indicates that calculation of ultimate bearing capacity of soil slope with the unified strength theory can sufficiently exploit the strength of material. Therefore, the calculation of ultimate bearing capacity of the soil slope based on the unified strength theory will be of great significance in future applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zongshan Zou ◽  
Jun Yang ◽  
Zhongming Wang ◽  
Hongyan Liu

For the deficiencies that the existing calculation theory for the Plastic Zone of Tunnel Surrounding Rock (PZTSR) does not consider the effect of the intermediate principal stress σ2 and interaction between the surrounding rock and support structure on the PZTSR under unequal stress, the Unified Strength Theory (UST) for the rock is adopted to replace the often used Mohr-Coulomb (M-C) strength criterion to consider the effect of σ2 on the PZTSR. Meanwhile, the interaction mechanism between the surrounding rock and support structure is also considered in the proposed model. Finally, the effect of the initial elastic displacement of the surrounding rock, stiffness of the support structure, and the coefficient b of the intermediate principal stress on the plastic zone is discussed. The results show that the PZTSR will increase nonlinearly with increasing the initial elastic displacement of the surrounding rock, and when it increases to a certain value, its increase extent will be much obvious. With increasing the stiffness of the support structure, the PZTSR will gradually decrease nonlinearly, but the decrease extent is not very much. With increasing b, the PZTSR will decrease; namely, σ2 can improve the stress condition of the surrounding rock and reduce the PZTSR.


2013 ◽  
Vol 438-439 ◽  
pp. 1409-1413
Author(s):  
Qing Liu ◽  
Wei Ding ◽  
Ben Wang ◽  
Hong Hai Liu ◽  
Bing Yu Wang

Based on the compaction effect of the gravel pile, the thick-walled tube model is established. Considering the gravel pile and pile materials with different properties of tension and compression of soil pile in the process of expansion, the influence of intermediate principal stress to improving the bearing capacity of foundation in the process of expansion, we use the planar axisymmetric double shear unified strength theory and present a gravel pile ultimate bearing capacity of single pile composite foundation unified expression. The theory study of gravel pile composite foundation and engineering practice has a certain guiding significance.


2011 ◽  
Vol 94-96 ◽  
pp. 1205-1210
Author(s):  
Zhao Liu ◽  
Jun Hai Zhao

The mechanical behavior and ultimate bearing capacity of the circular bar-reinforced concrete filled steel tube (BRCFST) short columns under axial compression are analyzed in this paper based on the unified strength theory. Considering the restriction effect of steel tube and hoop bar on concrete, the calculation formula of bearing capacity of the column is deduced. Parametric studies are carried out to evaluate the effects of intermediate principal stresses, diameter-thickness ratio of steel tube and the stirrup ratio on the bearing capacity of the column. A good agreement is reached by comparing the results calculated by the formula with the test results. It is concluded that the unified strength theory is applicable in the theoretical analyses of the BRCFST columns.


2013 ◽  
Vol 690-693 ◽  
pp. 742-746
Author(s):  
Peng Wu ◽  
Jian Feng Xu ◽  
Jun Hai Zhao ◽  
Qian Zhu ◽  
Su Wang

Based on unified strength theory, the mechanical behavior of core-concrete of concrete-filled square steel tubular stub columns was analyzed. Through controlling the constraint effect between square steel tube and core-concrete by width-thickness ratio, the ultimate bearing capacity formula for concrete-filled square steel tubular stub columns under axial compression was proposed, and the influencing factors of which was also discussed. The rationality of proposed formula was proved from the comparison of the analytical results obtained in this paper and experimental data.


2013 ◽  
Vol 50 (7) ◽  
pp. 735-743 ◽  
Author(s):  
Wen Fan ◽  
Mao-hong Yu ◽  
Long-sheng Deng ◽  
Xianglin Peng ◽  
Li-wei Chen

In this paper, the unified strength theory proposed by Yu Mao-hong in 1991 is used to develop new strength formulae for rock surrounding a tunnel. The new formulae can be applied to an elastic–plastic material. The formulae have a series of expressions with the unified parameter, especially variations such as the well-known Kastner and Airy formulae, which are widely used in rock mechanics and engineering. These formulae are derived on the basis of the Mohr–Coulomb strength criterion. For the strength-weakening (plastic-softening) of geomaterials, the analytical solutions for the radius of the plastic residual zones, radius of the plastic-softening zones, and displacement around the opening are presented according to the elastoplastic-softening – residual plastic, tri-linear stress–strain model. In addition, the derivation for the stress state in the surrounding rock is given. The Kastner formula, Airy formula, and available solutions can be considered as special cases in the new strength formula. The influence of softening, shear dilatancy, and different strength models on the results is analyzed. The results presented in this paper are useful for analyzing surrounding rock with various stress conditions and reinforcement of caves.


2012 ◽  
Vol 204-208 ◽  
pp. 4031-4037
Author(s):  
Gui Yun Xia ◽  
Jia Jun Li ◽  
Mei Liang Yang

Based on the unified strength theory presented by Maohong Yu, the calculating formula for the load-bearing capacity of concrete-filled double steel tube was derived. Through tests, the calculating load-bearing capacity results were compared with testing results, which agreed well. The change of load-bearing capacities with parameter k of the unified strength theory was discussed. It can be drawn that the load-bearing capacity of CFDST will increase with the increase of parameter b, but the increase is not obvious.


2013 ◽  
Vol 351-352 ◽  
pp. 337-341
Author(s):  
Qian Zhu ◽  
Jun Hai Zhao ◽  
Yan Li ◽  
Peng Wu ◽  
Su Wang

With consideration of the intermediate principal stress,the calculation formula of bearing capacity of RPC filled steel tube columns under axial compression is deduced based on the twin shear unified strength theory. Combining with the bond-slip theory,new ultimate bearing capacity formula is derived with the highest regard for bond stress. Compared with the theoretical result and the experimental data,good agreement can be found. The results show that unified strength theory and the bond-slip theory are versatile in theoretical analysis of the column. The analysis results can be provided for the optimum design of RPC filled steel tube and the solution has an important practical value for engineering application.


2013 ◽  
Vol 634-638 ◽  
pp. 2752-2756 ◽  
Author(s):  
Qing Yun Ge ◽  
Cai Mei Li ◽  
Fu Lian Yang ◽  
Feng Yan Qin

Based on the twin shear unified strength theory, considering the impact of the intermediate principal stress σ2 and the different effects of material’ tensile and compressive properties, this paper deduced the axial compressive bearing capacity formula of core column with high strength concrete filled steel tube. Compared the results of the paper with the test, both coincide in good condition. The results show the validity of the formula. The theoretical formula provides a theoretical basis in the project application and design on the core column with high strength concrete filled steel tube.


Sign in / Sign up

Export Citation Format

Share Document