Analysis on Creep Property and Model of Bridge Girder Concrete with Various Mix Proportions

2013 ◽  
Vol 368-370 ◽  
pp. 1487-1494
Author(s):  
Fei Guo ◽  
Hong Gen Qin ◽  
Peng Fei Cao ◽  
Guan Guo Liu ◽  
Yun Sheng Zhang

Combined with the construction of Jinghang Canal Bridge of Jiangliu highway, shrinkage and creep property of the cast-in-situ high performance concrete of bridge girder was researched. The results showed early shrinkage and creep development of the high performance concrete was relatively rapid, and creep tended to be stable 120 days later. With the admixture increasing, shrinkage and creep of the concrete were reduced. Meanwhile, early creep rate deceased. Similar results applied to the reduction of sand rate and water-cement ratio. Based on creep prediction models both at home and abroad, hyperbolic power function and exponential function model were put forward, taking the influence of material parameter and environmental factors on shrinkage and creep into consideration. In accordance with the model, concrete creep formula was given out and would provide a relatively scientific basis for practical prediction of concrete creep.

Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1057 ◽  
Author(s):  
Johannes Arend ◽  
Alexander Wetzel ◽  
Bernhard Middendorf

The adsorption of superplasticizer molecules to particle surfaces in cementitious systems is a very important aspect for the desired liquefaction of pastes and concretes. This way, the comb shaped polymers shield attractive forces between the particles and induce a well-dispersed, homogeneous suspension. These admixtures allow the usage of fine fillers even in combination with low amounts of mixing water, and thus, are the basis for modern high performance concretes. However, the adsorption does not cause beneficial effects only: The polymer covered particle surfaces, especially clinker, are hindered to interact with water, thus hydration is retarded. This is the reason for lower early strength and is very disadvantageous for certain applications. Today it is known that the molecular structure of the polymers, for instance the chain length and charge density, affects the retardation strongly. The complexity and diversity of cementitious systems is the main reason why research in this field is quite empiric and time as well as cost intensive. To investigate the adsorption of superplasticizers in various systems in-situ, a fluorescence microscopic approach was applied: By staining the polymers with fluorescent dye they become localizable and the adsorption quantifiable. This work shows the influence of molecular structure to adsorption characteristic of different polymers and the correlation to the retarding effect of superplasticizers, especially concerning the presence of silica fume, which is indispensable for ultra-high performance concrete (UHPC).


2019 ◽  
Vol 98 ◽  
pp. 61-73 ◽  
Author(s):  
Davide Sirtoli ◽  
Mateusz Wyrzykowski ◽  
Paolo Riva ◽  
Sergio Tortelli ◽  
Maurizio Marchi ◽  
...  

2016 ◽  
Vol 827 ◽  
pp. 215-218 ◽  
Author(s):  
David Čítek ◽  
Milan Rydval ◽  
Jiří Kolísko

Research in the Ultra-High Performance Concrete applications field is very important. Current experiences shows that the structure design should be optimize due to relatively new fine-grained cement-based Hi-Tech material with excellent mechanical and durability properties. It is not sure if some of the volumetric changes like creep or shrinkage has or has not an impact on an advantage for the construction and for the structure design. The effect of the shrinkage and creep of common used concretes are well known and well described at publications but the effect of volumetric changes of the UHPC is mostly unknown because of the fact that some of experimental tests are long term and the development of UHPC is still in its basics. A lot of works are focused on a basic mechanical properties and durability tests.


1996 ◽  
Vol 23 (5) ◽  
pp. 1129-1136
Author(s):  
Axel-Pierre Bois ◽  
Mohamed Lachemi ◽  
Gérard Ballivy

The Portneuf Bridge, built in 1992, is the first air-entrained high-performance concrete bridge in North America. To understand its short and long term behaviour, an auscultation program has been set. Hence, a cylindrical concrete inclusion of the Université de Sherbrooke was installed in one of the abutments of the bridge. The aim of this study is to present the first results thus acquired. The analysis of the results allowed to calculate the coefficient of thermal expansion of the concrete and to assess deformation variations due to shrinkage and creep and the effects of rebar–concrete interaction in the upper abutment region. Moreover, the presence of thermal gradients, which creates nonisotropic deformations, has been established. Key words: high-performance concrete, deformations, thermal gradients, instrumentation, bridge, monitoring. [Journal translation]


2021 ◽  
Author(s):  
Zahra Yazdizadeh

This research presents an overview of development and application of Fiber Bragg Grating sensors (FBG) technology in civil engineering applications. The primary focus of this research is the use of FBGs to investigate two most important time-dependent properties of concrete namely: creep strain and shrinkage strain. The first phase of this investigation is focused on using FBG sensors to measure the concrete strains in unreinforced concrete beams and cylinders to determine modulus of elasticity, the modulus of rapture and fracture energy of concrete. The second phase of this research is designed to investigate the creep and shrinkage using FBG sensors. Normal strength concrete (NC), High performance concrete (HPC) and ultra-high performance (UHPC) specimens’ are used to measure creep and shrinkage strains and to compare the values with typical prediction models. The measured creep and shrinkage strains are compared to four different models to determine which model is the most accurate.


The utilization of superior strength concrete offers points of interest in durability, simplicity of position, and decreased shrinkage and creep, just as expanded compressive, shear and rigidity. Balancing these favorable circumstances are possibly diminished flexibility and imperviousness to fire, and expanded unit cost. The present paper centers around the researching attributes of M50 evaluation concrete with replacement of cement with Ground Granulated Blast Furnace Slag (GGBS) and sand with the ROBO sand (crusher dust). The solid concrete cubes and cylinders are tried for compressive and split tensile strength. It is discovered that by replacement of cement with GGBS and the sand with ROBO sand helped in improving the quality of the solid considerably contrasted with ostensible blend concrete. The compressive quality is learned at 7days, 28 days. Water decreasing admixtures are utilized to expand functionality qualities. For all degrees of bond substitution cement accomplished predominant execution in the crisp and mechanical tests ought to be contrasted and the reference blend.


2018 ◽  
Vol 272 ◽  
pp. 21-27 ◽  
Author(s):  
Milan Holý ◽  
Lukáš Vráblík

This paper deals with the connection of timber beams and precast concrete slabs. The connection of timber and concrete has many advantages associated with the efficient use of both materials, not only in terms of their stress. Timber is a natural renewable material. It can be achieved some savings of volume of the concrete by its application and thereby also reducing of the environmental burden. By the combining of the timber and ultra-high performance concrete (UHPC), it can be designed very subtle, bearable, aesthetic and durable structures. The conventional timber-concrete composite structures are most often realized by joining of the timber beams and the cast in-situ reinforced concrete slabs. However, the cast in-situ slab is not very suitable for UHPC application and it has some structural disadvantages, in particular the need to protect the timber beams against moisture penetration from the fresh concrete mix, the need for formwork, etc. The prefabrication eliminates some disadvantages of the cast in-situ design, increases the quality of the structure and speeds up the construction process. In the case of the timber-concrete composite structures, the prefabrication has a positive impact on the reduction of the concrete shrinkage projections as the development of deflections and the redistribution of internal forces between the connected parts of the cross-section. Some special coupling elements must be used for connection in the case of precast slabs. This paper summarizes the research findings in the field of development of special coupling elements for composite timber-precast concrete structures. The development of the new coupling elements for pedestrian and cyclist timber-UHPC composite footbridges is presented.


2016 ◽  
Vol 20 (9) ◽  
pp. 1315-1324 ◽  
Author(s):  
Jianfeng Dong ◽  
Yuxi Zhao ◽  
Yueliang Gan ◽  
Chaomei Ding ◽  
Qiming He

This study investigated the penetration of chloride into surface-treated high-performance concrete and normal concrete in natural and accelerated environments. Both high-performance concrete and normal concrete were applied in a real port. Concrete specimens that were cast together with the concrete port were transported to the laboratory and subjected to wetting and drying cycles with NaCl solution. The chloride contents of the specimens in the laboratory and the in situ components were tested. The chloride diffusion coefficients and surface chloride contents were calculated based on Fick’s second law. The results show that high-performance concrete and surface treatment clearly slow the chloride penetration into the concrete both in the laboratory and in situ. The chloride contents on the surface and in the concrete in the components of the concrete port are higher during the summer than during the winter. The chloride penetration performance in the concrete of real structures cannot be inferred from its performance in specimens under artificial environments in the laboratory.


Sign in / Sign up

Export Citation Format

Share Document