Adjustment of Mill CNC Parameters to Optimize Cutting Operation and Surface Quality on Acrylic Sheet Machining

2013 ◽  
Vol 377 ◽  
pp. 117-122 ◽  
Author(s):  
Kuswara Setiawan ◽  
Sihar Tigor Benjamin Tambunan ◽  
Pram Eliyah Yuliana

Acrylic is easy to machine. In addition to the advantages derived from the use of mill Computer Numerical Control (CNC) machine on acrylic sheet, there are at least two serious problems that need attention especially in cutting a small part with many vertices. These problems are the presence of excessive heat due to friction between the cutting tool with acrylic sheet on high RPM of spindle rotation, and soft acrylic flakes trapped in crevices of the cutting tools’flute.Generally, the cutting process using a mill CNC machine often is a practice of trial and error. At least nine basic technical parameters need to be optimized. The effectiveness of the parameter values are determined by observing and measuring the actual cutting time using mill CNC machine at given parameter settings, surface texture quality, the level of clarity of the cuts, characteristics of chip formation, and edge roughness.The experimental results showed that the adhesion of acrylic sheet and cutting tools is relatively low. However, the heat of cutting tool due to high spindle rotation, low feed rate, and relatively low melting point of acrylic, tend to form very small, soft, and hot flakes. The acrylic chips have great potential entering the crevices of cutting tools’ flutes, and reducing the cutting power significantly. In other condition, the cutting tool could even be broken if feed rate is too high. Some technical values of these parameters are recommended to obtain optimal CNC based cutting operation and surface quality on acrylic sheet.

2020 ◽  
Vol 17 (2) ◽  
pp. 961-966
Author(s):  
Allina Abdullah ◽  
Afiqah Azman ◽  
B. M. Khirulrizwan

This research outlines an experimental study to determine the optimum parameter of cutting tool for the best surface roughness (Ra) of Aluminum Alloy (AA) 6063. For the experiment in this research, cutting parameters such as cutting speed, depth of cut and feed rate are used to identify the effect of both cutting tools which are tungsten carbide and cermet towards the surface roughness (Ra) of material AA6063. The machining operation involved to cut the material is turning process by using Computer Numerical Control (CNC) Lathe machine. The experimental design was designed by Full Factorial. The experiment that had been conducted by the researcher is 33 with 2 replications. The total number of the experiments that had been run is 54 runs for each cutting tool. Thus, the total number of experiments for both cutting tools is 108 runs. ANOVA analysis had been analyzed to identify the significant factor that affect the Ra result. The significant factors that affect the Ra result of AA6063 are feed rate and cutting speed. The researcher used main effect plot to determine the factor that most influenced the surface roughness of AA6063, the optimum condition of surface roughness and the optimum parameter of cutting tool. The factor that most influenced the surface roughness of AA6063 is feed rate. The optimum condition of surface roughness is at the feed rate of 0.05 mm/rev, cutting speed of 600 rpm and depth of cut of 0.10 mm. While the optimum parameter of cutting tool is cermet insert with the lowest value of surface roughness (Ra) result which is 0.650 μm.


2016 ◽  
Vol 1136 ◽  
pp. 651-654
Author(s):  
Hideki Aoyama ◽  
Duo Zhang

It is frequently the case that the feed rate indicated in a numerical control (NC) program does not obtain in actual machining processes and the cutting tool does not path the points indicated in the NC. A reason underlying such problems is that control gains are not optimized, which causes issues with acceleration and deceleration in the control of machine tools. To address these problems, in this paper, we propose a method for the optimization of control gains using the MATLAB and Simulink software by considering the weight of the workpiece, the controlling distance, and the controlling speed. Simulations confirmed the effectiveness of our proposed optimization.


Author(s):  
Anatoly M. Buglaev ◽  

Choosing effective methods and devices for surface hardening of wood-cutting tools is problematic due to the variety of their designs and operating conditions. In this regard, the development of such devices becomes an urgent task. According to the literature, one of the effective methods for increasing the service life of machine parts and tools is electrospark hardening or electrospark alloying. Industrial electrospark installations such as “EFI” (electrophysical measurements) and “Elitron” with manual vibrators are used for electrospark hardening. However, using manual vibrators significantly increases the labour intensity and hardening time. Moreover, the surface quality after hardening with manual vibrators is often unsatisfactory. Various mechanized installations have been developed in order to reduce the labour intensity of electrospark hardening. Nevertheless, these installations are designed to harden specific parts and do not allow hardening tools of various designs, including woodcutting tools. The surface quality after hardening in mechanized installations does not always satisfy the customer. Further surface plastic deformation treatments, such as rolling and unrolling with rollers and balls, as well as diamond burnishing, are often used to improve the surface quality after electrospark hardening. The surface quality after additional processing by these methods boosts, although the labour intensity and cost of the hardening process increase. To increase the wear resistance of machine parts and tools, it is reasonable to reduce the height parameters of roughness, increase microhardness, and form the residual compressive stresses, which is ensured by the methods of surface plastic deformation. In this regard, it becomes necessary to use electrospark hardening simultaneously with surface plastic deformation. The work presents the design and features of using the device for hardening. The device was used to strengthen the thicknesser machine knives, which made it possible to almost double their durability. Applying this device, in comparison with using the electrospark hardening with a manual vibrator, reduces the roughness of the hardened surface and improves the surface quality of the processed workpieces. The modes of hardening have been installed, making it possible to effectively harden wood-cutting tools. For citation: Buglaev A.M. Device for Wood-Cutting Tool Hardening. Lesnoy Zhurnal [Russian Forestry Journal], 2021, no. 5, pp. 134–141. DOI: 10.37482/0536-1036-2021-5-134-141


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4896
Author(s):  
Guang Li ◽  
Yan Fu ◽  
Duanbing Chen ◽  
Lulu Shi ◽  
Junlin Zhou

In recent years, industrial production has become more and more automated. Machine cutting tool as an important part of industrial production have a large impact on the production efficiency and costs of products. In a real manufacturing process, tool breakage often occurs in an instant without warning, which results a extremely unbalanced ratio of the tool breakage samples to the normal ones. In this case, the traditional supervised learning model can not fit the sample of tool breakage well, which results to inaccurate prediction of tool breakage. In this paper, we use the high precision Hall sensor to collect spindle current data of computer numerical control (CNC). Combining the anomaly detection and deep learning methods, we propose a simple and novel method called CNN-AD to solve the class-imbalance problem in tool breakage prediction. Compared with other prediction algorithms, the proposed method can converge faster and has better accuracy.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5133-5147
Author(s):  
Hüseyin Pelit ◽  
Mustafa Korkmaz ◽  
Mehmet Budakçı

The effects of different machining parameters on surface roughness values of thermally treated pine, beech, and linden woods cut in a computer numerical control (CNC) router machine were examined. Wood specimens were thermally treated at 170, 190, and 210 °C for 2 h. Then, specimens were cut in the radial and tangential directions with three different spindle speeds (12000, 15000, and 18000 rpm) and three different feed rates (3000, 4000, and 6000 mm/min) using two different end mill tools (spiral and straight) on the CNC machine. The end mill type significantly affected the roughness values of the untreated and thermally treated specimens in both directions. Lower roughness values were found in the specimens (especially pine) machined with the straight end mill compared to those machined with the spiral end mill. Roughness generally decreased in the thermally treated specimens. However, thermal treatment temperature did not have a notable effect on roughness. As the spindle speed increased, the roughness values of all specimens decreased. In contrast, as the feed rate increased, the roughness values increased. Therefore, the end mill type, feed rate, and spindle speed were the most influential parameters on the roughness.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8431
Author(s):  
Arturo Yosimar Jaen-Cuellar ◽  
Roque Alfredo Osornio-Ríos ◽  
Miguel Trejo-Hernández ◽  
Israel Zamudio-Ramírez ◽  
Geovanni Díaz-Saldaña ◽  
...  

The computer numerical control (CNC) machine has recently taken a fundamental role in the manufacturing industry, which is essential for the economic development of many countries. Current high quality production standards, along with the requirement for maximum economic benefits, demand the use of tool condition monitoring (TCM) systems able to monitor and diagnose cutting tool wear. Current TCM methodologies mainly rely on vibration signals, cutting force signals, and acoustic emission (AE) signals, which have the common drawback of requiring the installation of sensors near the working area, a factor that limits their application in practical terms. Moreover, as machining processes require the optimal tuning of cutting parameters, novel methodologies must be able to perform the diagnosis under a variety of cutting parameters. This paper proposes a novel non-invasive method capable of automatically diagnosing cutting tool wear in CNC machines under the variation of cutting speed and feed rate cutting parameters. The proposal relies on the sensor information fusion of spindle-motor stray flux and current signals by means of statistical and non-statistical time-domain parameters, which are then reduced by means of a linear discriminant analysis (LDA); a feed-forward neural network is then used to automatically classify the level of wear on the cutting tool. The proposal is validated with a Fanuc Oi mate Computer Numeric Control (CNC) turning machine for three different cutting tool wear levels and different cutting speed and feed rate values.


2013 ◽  
Vol 443 ◽  
pp. 290-293
Author(s):  
Bo Tang

In the study of high speed cutting technology of complex parts, cutting methods and techniques must be closely combined with the selection of geometric parameters of cutting tool materials and cutting tool integrated. Numerical control machine tools and cutting tools without good guidance technology, cannot give full play to the advantages of NC machining. Based on this, this article mainly aimed at the complex parts NC cutting parameter selection, therefore cutting parameter optimization mathematical model is set up, and optimize it.


2011 ◽  
Vol 418-420 ◽  
pp. 1342-1345
Author(s):  
Yun Hai Jia ◽  
Zhi Qun Ye ◽  
Hai Zhu Wang ◽  
Hua Wei Jing

Chilled cast iron is a typical hard and brittle material, often be used to make all kinds of roller. According to chilled cast iron machining characteristics, cutting tool material should has high red hardness, good impact resistance and wear resistance, high bending strength and large thermal conductivity coefficient. For determination of the suitable cutting parameters in machining chilled cast iron by PcBN cutting tools dry turning, the samples which are prepared to be used in the experiment, 200 mm in length and 120 mm in diameter, are machined in lathe. During experiments, cutting tool parameters and dry turning parameters, such as edge chamfer width and angle, feed rate, cutting speed and cut depth are investigated. The suitable edge chamfer width and angle, cutting speed and feed rate are determined according to cutting tool life and cutting tools flank wear. Finally, edge chamfer width of 0.2 mm, edge chamfer angle of -15 degree, cutting speed of 90 m/min, feed rate of 0.15 to 0.2 mm/rev and cut depth of 0.3 mm gave the satisfied results.


2021 ◽  
Vol 5 (4) ◽  
pp. 108
Author(s):  
Andrii Zelinko ◽  
Florian Welzel ◽  
Dirk Biermann ◽  
Viktor Maiboroda

Magnetic abrasive finishing (MAF) shows a high potential for use on computerized numerical control (CNC) machine tools as a standard tool to polish workpieces directly after the milling process. This paper presents a new MAF tool with a single, large permanent magnet and a novel top cover structure for finishing the plain ferromagnetic workpieces. The top cover structure of the MAF tool, combined with an optimized working gap, ensures the effect of mechanical powder compaction, which leads to a significant increase in process capability and surface roughness reduction. The influence of the process parameters such as feed rate, equivalent cutting speed, working gap (including for three grain sizes) and the gap to the magnet was investigated. In addition, the influence of the initial surface after face milling, end milling, ball end milling and grinding on the surface quality after MAF was investigated. Furthermore, three typical surfaces after milling and MAF were analyzed. By magnetic abrasive finishing, a significant surface quality improvement of the initial milled surfaces to roughness values up to Ra = 0.02 µm and Rz = 0.12 µm in one processing step could be achieved.


2021 ◽  
Author(s):  
Jose Maria Gonzalez Castro ◽  
Giselle Ramirez Sandoval ◽  
Eduard Vidales Coca ◽  
Nuri Cuadrado Lafoz ◽  
Francesc Bonada

Smart manufacturing has been in the media for a long time, but the reality shows that traditional mechanical manufacturing industries have not been able to implement data solutions aligned with Industry 4.0 standards. This work inquiries into the possibility of measuring cutting tool vibrations for CNC turning machines and presents the data analysis and a predictive model to identify tool wearing that can affects integrity surface quality of the manufactured component. These preliminary results are orientated towards implementing a predictive maintenance methodology in cutting tools.


Sign in / Sign up

Export Citation Format

Share Document