Air-Gap Magnetic Field Optimization to Reduce Losses in High Speed Bearingless Permanent Magnet Synchronous Motor

2013 ◽  
Vol 387 ◽  
pp. 360-364
Author(s):  
Tao Zhang ◽  
Hong Yun Jia ◽  
Hui Ping Zhang ◽  
Jian Xiang Ji

In this paper, the high speed motor hybrids with a radial-axial 3 degree of freedom hybrid magnetic bearing unit and BPMSM unit is proposed. The radial suspension force and magnetic field distributions with different magnetized mode are calculated. The losses are calculated and compared using time-stepping finite element method. The research results have shown that the high-speed BPMSM with Halbach array permanent magnet rotor has sinusoidal air-gap magnetic field, minimum losses.

2019 ◽  
Vol 43 (4) ◽  
pp. 515-525
Author(s):  
Hongbo Qiu ◽  
Yong Zhang ◽  
Cunxiang Yang ◽  
Ran Yi

The application of an inverter is becoming more and more widespread in the surface-mounted permanent-magnet synchronous motor (SMPMSM). A large number of voltage harmonics can be generated by the inverter. The electromagnetic torque, loss, and air-gap magnetic density of the SMPMSM are affected by voltage harmonic. To analyze its influence, taking a 3 kW 1500 r/min SMPMSM as an example, a two-dimensional transient electromagnetic field model is established. The correctness of the model is verified by comparing the experimental data with the calculated data. Firstly, the finite element method is used to calculate the electromagnetic field of the SMPMSM, and the performance parameters of the SMPMSM are obtained. Based on these parameters, the influence of voltage harmonic on motor performance is analyzed quantitatively. Secondly, the influence of the voltage harmonic on the air-gap magnetic field is analyzed, and the influence degree of the time harmonic on the air-gap magnetic field is determined. At the same time, torque ripple, average torque, and loss are studied when the different harmonics orders, amplitudes, and phase angles are contained in voltage, and the variation is obtained. Finally, the variation mechanism of eddy current loss is revealed. The conclusion of this paper provides reliable theoretical guidance for improving motor performance.


2013 ◽  
Vol 467 ◽  
pp. 536-541
Author(s):  
Shu Wang Wang ◽  
Xu Tian ◽  
Chun Zhe Sun ◽  
Xiang Hong Ma

In order to reduce the influence of the harmonics of the air-gap magnetic field on PMSM performance, in this paper, the method which is to add auxiliary grooves in the rotor surface is proposed to optimize the air-gap magnetic field of PMSM and reduce the iron loss, torque ripple and noise-vibration caused by the harmonics. During the process, the orthogonal experimental method and the time-stepping FEM were used to optimize the structure of the grooves. Analyzed and compared the test-data and the calculated data,it shows that this method can largely improve motors performance.


2011 ◽  
Vol 383-390 ◽  
pp. 835-839
Author(s):  
Yue Jun An ◽  
Hong Liang Wen ◽  
Wen Qiang Zhao ◽  
Guo Ming Liu ◽  
Zhao Jun Meng

In order to improve the sinusoidal level of air gap magnetic field of the traditional surface PMSM, reduce its harmonic losses and fully reflect its energy-saving advantages, this paper introduces a type of sinusoidal pole width modulation permanent magnet synchronous motor. The surface magnetic poles of the rotor iron core constitute by a number of small array magnets, which makes the air gap magnetic field more sinusoidal. Placing starting winding in remaining space between array magnets of rotor outer surface to make surface-mounted permanent magnet synchronous motor add self-starting function. The sine wave distortion rate of air gap magnetic field of sinusoidal pole width modulation structure was compared with traditional surface-mounted structure by electromagnetic field calculation and experiment. The copper starting winding and aluminum starting winding were placed in sinusoidal pole width modulation structure motor respectively, and then the paper analyzes dynamic torque and rotational speed of self-starting progress. Finally the analysis is verified by experiments.


2021 ◽  
Vol 67 (3) ◽  
pp. 327-338
Author(s):  
Yixiang Xu ◽  
Chong Di ◽  
Xiaohua Bao ◽  
Dongying Xu

The torque ripple is affected by both the stator and the rotor magnetic field harmonics. In synchronous reluctance motors (SynRM), there are only rotor permeance harmonics existing on the rotor side for the absence of the rotor windings. Since the asymmetric rotor flux barriers are widely applied in the SynRM rotor, it is difficult to calculate the rotor permeance accurately by the analytical method. In this article, the effects of the rotor permeance harmonics on the air-gap magnetic field are studied by a virtual permanent magnet harmonic machine (VPMHM), which is a finite-element (FE) based magnetostatic analysis model. The air-gap flux density harmonics produced by the SynRM rotor are extracted from the VPMHM model and used as the intermediate variables for the torque ripple optimization. The proposed method does not need to solve the transient process of motor motion. Hence, the time of the optimization process can be significantly shortened. Finally, a full electric cycle is simulated by dynamic FE simulation, and the torque ripple is proved to be effectively reduced.


2012 ◽  
Vol 229-231 ◽  
pp. 945-948
Author(s):  
Yue Jun An ◽  
Li Min Zhou ◽  
Li Ping Xue ◽  
Yong Li

In order to further improve the power supply system reliability of low voltage high current vehicle generator, hybrid excitation is used and the permanent magnets are added between the main magnetic poles body and pole shoes. Aiming at reply the problem of limited installation space, the asymmetric pole structure, non-uniform commutating pole, single wave windings playing a role of the pressure line and oblique brush etc are investigated for improving commutation. This paper researched on the distribution of the flux line, the waveform of the air gap magnetic field, and analysis inner magnetic field at the loading by hybrid excitation and no loading by permanent magnet excitation alone respectively with the method of finite element. The results reveal that the magnetic field established by several excitation systems is still symmetric and uniform although the asymmetric structure, so it ensures the provision of suitable medium space for mechanical and electrical energy conversion. By comparing the permanent magnets excitation alone and hybrid excitation in a generator magnetic field distribution and air gap magnetic field waveform, the permanent magnet excitation and electricity excitation realized the superposition of magnetic field, and common establish main generator magnetic field. Hybrid excitation also reduces the current density of excitation coils and improves the heat dissipating performance compared with electrically excited alone. Through the performance analysis of the hybrid excitation, the output voltage waveform is very stable. The curve of auxiliary excitation current along with velocity variation provide important basis for excitation control devices and the development of control algorithm. It will help to improve the stability, reliability and security of the generator, the results can provide key technical support to the development of low-voltage high-current hybrid excitation vehicle generator.


2014 ◽  
Vol 1049-1050 ◽  
pp. 846-849
Author(s):  
Ying Hai Wang ◽  
Hao Ming Zhang ◽  
Lian Soon Peh

Halbach motor is a new type permanent magnet synchronous motor: unique permanent magnet structure makes its magnetic field unilateral and distributed sinusoidal, increases the magnetic density of air gap while decreases the magnetic density of rotor. It helps to raise the power density and efficiency of power, reduces the size of motor and the pulsating torque. The full-digital variable frequency adjustable speed AGV system with halbach motor based on the TMS320F2812 is designed, and its experiment result proves that it performed well and environment-friendly, saving the energy as well.


Author(s):  
Behrooz Rezaeealam ◽  
Farhad Rezaee-Alam

Purpose The purpose of this paper is to present a new optimal design for integral slot permanent magnet synchronous motors (PMSMs) to shape the air-gap magnetic field in sinusoidal and to reduce the cogging torque, simultaneously. Design/methodology/approach For obtaining this new optimal design, the influence of different magnetizations of permanent magnets (PMs), including radial, parallel and halbach magnetization is investigated on the performance of one typical PMSM by using the conformal mapping (CM) method. To reduce the cogging torque even more, the technique of slot opening shift is also implemented on the stator slots of analyzed PMSM without reduction in the main performance, including the air-gap magnetic field, the average torque and back-electromotive force (back-EMF). Findings Finally, an optimal configuration including the Hat-type magnet poles with halbach magnetization on the rotor and shifted slot openings on the stator is obtained through the CM method, which shows the main reduction in cogging torque and the harmonic content of air-gap magnetic field. Practical implications The obtained optimal design is completely practical and is validated by comparing with the corresponding results obtained through finite element method. Originality/value This paper presents a new optimal design for integral slot PMSMs, which can include different design considerations, such as the reduction of cogging torque and the total harmonic distortion of air-gap magnetic field by using the CM method.


Sign in / Sign up

Export Citation Format

Share Document