The Parameter Identification of the Steep Seam Goafs Structural Characteristics of the Coal and Rock Based on GPR

2013 ◽  
Vol 390 ◽  
pp. 403-407 ◽  
Author(s):  
Sheng Jun Miao ◽  
Chao Long ◽  
Guan Lin Huang ◽  
Han Chen

Identifying the rock mass structure is crucial for disaster control and safe mining.In the south tunneling lane of the original +600 level, using detection method of GPR (Ground Penetrating Radar ) to implement the sophisticated detection of failure characteristics, groundwater and rock structure of the upper goaf. It determines the goaf structure parameters and water conditions through the comparative analysis of the information image. The result shows: there is no large goaf, the coal seam is broken seriously in part section and water is rich in the detection range (200m) from 2650 to 2850. The coal is hypostatic and whole in the section above 20m. It has a great significance to the safety of deep mining design and the prevention for disasters of the steep thick coal seam.

Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 934 ◽  
Author(s):  
Jinzhu Hu ◽  
Manchao He ◽  
Jiong Wang ◽  
Zimin Ma ◽  
Yajun Wang ◽  
...  

Gob-side entry retaining by roof cutting (GERRC) employed in a deep inclined thick coal seam (DITCS) can not only increase economic benefits and coal recovery, but also optimize surrounding rock structure. In accordance with the principles of GERRC, the technology of GERRC in DITCS is introduced and a roof-cutting mechanical model of GERRC is proposed to determine the key parameters of the depth and angle of RC. The results show that the greater the RC angle, the easier the caving of the goaf roof, but the length of cantilever beam increases. The depth of RC should account for the dip angle of the coal seam when the angle is above 20°. Increasing the coal seam dip angle could reduce the volume of rock falling of the goaf roof, but increase the filling height of the upper gangue to slide down. According to numerical model analysis of the stress and displacement of surrounding rock at different depths and angles of RC, when the depth of RC increased from 9 m to 13 m, the distance between the stress concentration zone and the coal side is increased. When the angle of RC increased from 0° to 20°, the value of roof separation is decreased. GERRC was applied in a DITCS with 11 m depth and 20° RC angle, and the field-measured data verified the conclusions of the numerical model.


Author(s):  
Mengye Zhao ◽  
Lei Zhu ◽  
Qingxiang Huang ◽  
Kai Xu ◽  
Yuyi Wu ◽  
...  

AbstractBased on the S1201-2 large height mining in the 2–2 coal seam of Ningtiaota colliery with on-site microseismic measurement, physical simulation and theoretical analysis methods, this paper explores the rule of roof movement in thick coal seams with roof cutting and non-pillar (hereinafter referred to as RCN-P) mining, so as to obtain scientific and effective theoretical basis for entry support and to summarize the regional structural characteristics and dynamic periodic fracture characteristics. As can be seen from microseismic events, the entry roof is featured by "two zones and one line" along the horizontal direction, namely, the crack generation area, the roof movement area. Additionally, and the obvious lateral breaking of the entry roof on the coal wall is a typical feature of the thick coal seam with RCN-P mining. The roof is vertically divided into "three zones", the crack generation area, the roof movement area and the crack development area. The roof cutting activity mainly affects the overburden activity within the basic roof height range, which is also the roof movement area. In addition, the distribution frequency and the intensity of microseismic events indicate the roof periodic breaking characteristics. The "breaking pressure relief,” “advanced crack development,” and “the limit breaking state” of roof breaking corresponds to the initial, middle, and final stage of breaking in the periodic weighting process, respectively. Compared with the normal mining, the RCN-P mining reduces the periodic weighting length and increases the pressure strength. As is shown in the physical simulation experiment, the basic roof and the cutting control layer in the "regional structural characteristics" constitute the “large” and “small” structures with RCN-P mining. The basic roof key layer is the core to control the stability of the strata, and the breaking process from the cantilever beam to the short masonry beam of the roof-cutting control layer is the main cause of the entry stress. Correspondingly, the basic structure model of “short masonry-hinged” roof was proposed and the calculation method of support was established for the entry with RCN-P mining in thick coal seam, providing a research foundation for scientific and effective rock formation control.


2021 ◽  
Author(s):  
Lei Zhu ◽  
Mengye Zhao ◽  
Qingxiang Huang ◽  
Kai Xu ◽  
Yuyi Wu ◽  
...  

Abstract Based on the S1201-2 large height mining in the 2-2 coal seam of Ningtiaota colliery with on-site microseismic measurement, physical simulation and theoretical analysis methods, this paper explores the rule of roof movement in thick coal seams with roof cutting and non-pillar (hereinafter referred to as RCN-P) mining, so as to obtain scientific and effective theoretical basis for entry support and to summarize the regional structural characteristics and dynamic periodic fracture characteristics. As can be seen from microseismic events, the entry roof is featured by "two zones and one line" along the horizontal direction, namely, the crack generation area, the roof movement area. Additionally, and the obvious lateral breaking of the entry roof on the coal wall is a typical feature of the thick coal seam with RCN-P mining. The roof is vertically divided into "three zones", the crack generation area, the roof movement area and the crack development area. The roof cutting activity mainly affects the overburden activity within the basic roof height range, which is also the roof movement area. In addition, the distribution frequency and the intensity of microseismic events indicate the roof periodic breaking characteristics. The "breaking pressure relief,” “advanced crack development,” and “the limit breaking state” of roof breaking corresponds to the initial, middle, and final stage of breaking in the periodic weighting process, respectively. Compared with the normal mining, the RCN-P mining reduces the periodic weighting length and increases the pressure strength. As is shown in the physical simulation experiment, the basic roof and the cutting control layer in the "regional structural characteristics" constitute the “large” and “small” structures with RCN-P mining. The basic roof key layer is the core to control the stability of the strata, and the breaking process from the cantilever beam to the short masonry beam of the roof-cutting control layer is the main cause of the entry stress. Correspondingly, the basic structure model of “short masonry-hinged” roof was proposed and the calculation method of support was established for the entry with RCN-P mining in thick coal seam, providing a research foundation for scientific and effective rock formation control.


2021 ◽  
Vol 267 ◽  
pp. 02032
Author(s):  
Qihan Ren

In view of the severe ground pressure behavior and spontaneous combustion risk of goaf in fully mechanized top coal caving face with deep buried weak cohesive roof and thick coal seam prone to spontaneous combustion, combined with theoretical analysis of mining overburden structure and field engineering practice, the structural characteristics of overburden rock and strata pressure behavior law are studied. The results show that: the deep buried thick coal seam fully mechanized top coal caving stope also has the phenomenon of surface step subsidence. Compared with the shallow coal seam, the surface subsidence is relatively slow, and the weak adhesion of the roof leads to the short periodic weighting step distance of the stope, and the average step distance is 9.9m. The measured peak value of advance abutment pressure is 7~10.5m in front of coal wall. According to the mine pressure control and fire prevention demand of goaf, the reasonable advancing speed is 4~5m/d.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Qin Guangpeng ◽  
Cao Jing ◽  
Wang Chao ◽  
Wu Shuo ◽  
Zhai Minghua

The stratified mining of super thick coal seam is a process of repeated disturbance of the top roof, especially in the lower stratification, the upper complex rock layer has a greater settlement space, resulting in great changes in the strata structure and fissure distribution. The main coal seam thickness of Rujigou Coal Mine exceeds 20 m, due to the high gas content of the coal seam, it is prone to spontaneous combustion, and the stratified mining method is adopted. When a small-size section coal pillar (less than 10 m) is used, the complex rock structure evolution and fissure development characteristics during the stratified mining of shallow buried thick coal seam will directly affect the movement of gas transportation between the working face and the goaf and will directly affect the safety of the working face. Taking Rujigou coal mine as engineering background, this paper analyzes the breaking structure, fracture development, and evolution law of overlying strata in different layers and different sections of coal seam when the buried depth is shallow, and the extra-thick coal seam is stratified mining. The results show that in the process of stratified mining, the overlying strata break, in addition to the whole trapezoidal failure structure, will also form a local F type fracture structure, and with the stratified downward mining, the F type fracture structure will continue to move up and disappear until it is compacted. The “V” type and “U” type subsidence characteristics of different strata overburden are presented after mining in stratified working face of extra-thick coal seam, and the subsidence amount is approximately symmetrical distribution along the middle line of goaf. In the mining process of the lower part of the layer, the end broken rock block is easy to slip along the hinge point by the hinged rock beam structure, and the sliding instability occurs. In the process of stratified mining of ultrathick coal seam, the main fissure of overburden is mainly longitudinal fissure, and it is very easy to form through with the upper layer and will finally connect with the surface under the condition of shallow buried depth. The inclined cracks connected with the adjacent goaf are formed above the coal pillar of the section, which becomes the passage of gas migration in the goaf. The research conclusion shows that for the stratified mining of high gas thick coal seam, special attention should be paid to the treatment of the gas on the stratified working face. In addition to the conventional gas treatment measures such as coal seam prepumping, the buried pipe pumping in the mining area can also be adopted, which can effectively reduce the gas concentration of the working surface.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Hongtao Liu ◽  
Tianhong Huo ◽  
Yongen Li ◽  
Ming Luo ◽  
Guangdong Zhou ◽  
...  

The Zhaogu No. 2 coal mine is a single thick coal seam mining mine with high gas content. Due to the lack of protective layer mining conditions, we can only arrange the floor gas extraction roadway (FGER) to extract the gas from the overlying coal seam of the FGER to ensure safe production. However, improper placement of FGER will cause water inrush from the floor of FGER. Given above contradictions, this paper analyzes the stress-strain relationship of the fractured rock mass in the caving zone and the stress-recovery characteristics of the goaf from the perspective of the structural characteristics of the overlying strata above goaf. Based on this, a FLAC3D numerical model of equivalent delayed filling of caving rock mass was established by using the double-yield model filling method. The distribution of floor stress under the influence of mining is obtained after the model calculation, i.e., with the increase of the distance from the floor, the ratio of bidirectional stress to the peak value, and the stability value decrease, but the decrease amplitude becomes smaller and smaller. Therefore, floor roadway used for gas extraction should be located 10-15 m below the floor. Combined with the distribution of floor strata in 11060 working face, it is finally determined that FGER should be located 13 m below the floor. Such arrangement of FGER can not only ensure the effect of gas drainage but also prevent the occurrence of water inrush from floor.


2021 ◽  
Vol 11 (9) ◽  
pp. 4125
Author(s):  
Zhe Xiang ◽  
Nong Zhang ◽  
Zhengzheng Xie ◽  
Feng Guo ◽  
Chenghao Zhang

The higher strength of a hard roof leads to higher coal pressure during coal mining, especially under extra-thick coal seam conditions. This study addresses the hard roof control problem for extra-thick coal seams using the air return roadway 4106 (AR 4106) of the Wenjiapo Coal Mine as a case study. A new surrounding rock control strategy is proposed, which mainly includes 44 m deep-hole pre-splitting blasting for stress releasing and flexible 4-m-long bolt for roof supporting. Based on the new support scheme, field tests were performed. The results show that roadway support failure in traditional scenarios is caused by insufficient bolt length and extensive rotary subsidence of the long cantilever beam of the hard roof. In the new proposed scheme, flexible 4-m-long bolts are shown to effectively restrain the initial expansion deformation of the top coal. The deflection of the rock beam anchored by the roof foundation are improved. Deep-hole pre-splitting blasting effectively reduces the cantilever distance of the “block B” of the voussoir beam structure. The stress environment of the roadway surrounding rock is optimized and anchorage structure damage is inhibited. The results provide insights regarding the safe control of roadway roofs under extra-thick coal seam conditions.


2009 ◽  
Vol 15 (3) ◽  
pp. 299-303 ◽  
Author(s):  
Tian-cai He ◽  
Hai-gui Li ◽  
Hai-jun Zhang

Sign in / Sign up

Export Citation Format

Share Document