Development and Implementation of a Method for Chatter Control in Turning Applying Magnet from below the Tool

2013 ◽  
Vol 394 ◽  
pp. 205-210
Author(s):  
A.K.M. Nurul Amin ◽  
Fawaz Mohsen Abdullah ◽  
Ummu Atiqah Khairiyah B. Mohammad ◽  
Muammer Din Arif

Chatter is a self-excited and violent form of vibration which is almost unavoidable in all machining processes. It affects surface roughness, machining accuracy, cutting tool and machine tool life, metal removal rate; and consequently operation cost. This research work focuses on investigation of the influence of the cutting parameters on chatter and implementation of a method based on application of permanent magnet for controlling chatter during turning of stainless steel AISI 304 using coated carbide tool. For this purpose, a powerful permanent bar magnet (of strength 1250-1350 Gauss) was placed inside a specially developed fixture mounted on the lathe machine carriage, to apply magnetic field to the base of the tool holder in the Z direction. The effectiveness of the application of the magnet on chatter suppression was measured in terms of reduction of amplitude of chatter compared to conventional turning. To achieve this, a small central composite design (CCD) of the Response Surface Methodology (RSM) with five levels and an alpha value of 1.4142, was used in the design of the experiments (DoE). Design-Expert 6.0 software was utilized in the model development process. Vibration monitoring was done using an online vibration monitoring system. FFT analysis of the recorded vibration signals was conducted using DASYLab software to evaluate the peak chatter amplitudes and their corresponding excited frequencies. The acceleration amplitude was found to be reduced by a maximum of 73.43% and an average of 31.58% due to the effect of damping on the resonant amplitude offered by the magnetic field created by the permanent magnet.

2015 ◽  
Vol 813-814 ◽  
pp. 634-640
Author(s):  
N.K. Francis ◽  
K.G. Viswanadhan ◽  
M.M. Paulose

Swirling Fluidized Bed Polishing (SFBP) is a non–traditional alternative abrasive flow surface finishing form of Fluidized Bed Machining (FBM) in which the former has special features to overcome certain significant limitations of the latter, namely the variation of the surface roughness vertically along the component surface and the screening effect owing to the complex contours in the work piece geometry. Owing to its ability to perform machining and generate polished surface from a roughness value of Ra 1.2μ to 0.2 μ within 8 hours of processing, this new method offers greater scope in the surface modification of rough machined surfaces with complex geometry such as component with ducts and grooves. This research focus on investigating the effect of abrasive particle concentration on metal removal rate per unit area of the specimen surface. 3D surface morphology analysis investigates the quality of the polished surface and the study of circumferential uniformity and machining accuracy analysis on a complex-contoured component further investigate its scope and relevance in industrial applications.


2012 ◽  
Vol 602-604 ◽  
pp. 2273-2278
Author(s):  
Ping Zhang ◽  
Jia Chun Li

As a new process, the abrasive belt grinding plays an increasingly important role in the field of machining. It meets a variety of processing requirements. The concept of abrasive belt grinding and its working principle were introduced, and a new type of abrasive belt grinding equipment for removing the rust on steel wire surface was designed. Some key experiments for testing grinding force,the metal removal rate,belt wear rate、grinding ratio,grinding depth and wire speed were studied. The research work provides rational parameters for the pretreatment of rust removal in metal wire drawing processing.


Author(s):  
Fred Lacerda Amorim ◽  
Tiago Czelusniak ◽  
Camila Higa

The cost of a part manufactured by Electrical Discharge Machining (EDM) is mainly determined by electrode cost. The production of electrodes by conventional machining processes is complex, time consuming and can account for over fifty percent of the total EDM process costs. The emerging Additive Manufacturing (AM) technologies provide the possibility of direct fabrication of EDM electrodes. Selective Laser Sintering (SLS) is an alternative AM technique because it has the possibility to directly produce functional components, reducing the tool-room lead time and total EDM costs. The main difficulty of manufacturing an EDM electrode using SLS is the selection of an appropriate material, once both processes require different material properties. The current work focused on the investigation of appropriate materials that fulfill EDM and SLS process demands. Three new metal-matrix materials composed of Mo-CuNi, TiB2-CuNi and ZrB2-CuNi were developed and electrodes under adequate SLS conditions were manufactured. EDM experiments using different discharge energies were carried out and the performance evaluated in terms of material removal rate and volumetric relative wear. The results showed the powder systems composed of Mo-CuNi, TiB2-CuNi and ZrB2-CuNi revealed to be successfully processed by SLS and the EDM experiments demonstrated that the newly composite electrodes possess superior performance when compared to copper powder electrodes made with SLS. The work also suggests important topics for future research work on this field.


2013 ◽  
Vol 393 ◽  
pp. 183-188 ◽  
Author(s):  
Ummu Atiqah Khairiyah B. Mohammad ◽  
A.K.M.N. Amin ◽  
Muhd Amir Hafiz Bin Ahamad Mahrodi ◽  
Muammer D. Arif

Chatter is almost an unavoidable phenomenon during machining, normally accompanied by a characteristic sharp and monotonous noise. Apart from noise pollution in the industry, chatter leaves a bad surface finish on the part and negatively influences dimensional tolerances, reduced productivity, excessive tool wear and damaged machine-tool components. Therefore, chatter avoidance is utmost importance. However, a deeper investigation into chatter formation reveals that chatter appears during metal cutting process as a result of resonance caused by interaction of the prominent natural frequencies of the system with the frequency of chip serration. This paper presents an innovative approach to chatter suppression during turning of stainless steel AISI 304 applying permanent magnet from the bottom of the tool holder to increase the damping coefficient of the tool holder, since it has been identified that the tool holder is the main vibrating component during turning. A special fixture was designed, fabricated and mounted on the carriage of a conventional turning machine Harrison M390 for holding a permanent magnet bar. The variable cutting parameters were - cutting speed, feed rate and depth of cut at constant tool overhang of 120 mm. The experiments were designed based small Central Composite Design (small CCD) based on the Response Surface Methodology (RSM) approach using DESIGN EXPERT (DOE) software. The experiments were performed under two different conditions, the first under normal conditions, while the other was under the application of magnetic field from permanent magnet located side direction of the tool holder. The experiments focused on monitoring the vibration signals using a vibration data acquisition system during turning operation. Analysis of the recorded signals in the FFT domain indicated significant reduction of chatter when a magnetic field is applied. It is apparent that a reduction of chatter amplitude will result in improved surface finish, tool life, machining accuracy, productivity, as well as reduction of operation.


2016 ◽  
Vol 16 (3) ◽  
pp. 153-162 ◽  
Author(s):  
D. Rajamani ◽  
A. Tamilarasan

AbstractTitanium super alloys are known as one of the difficult-to-cut materials through conventional machining processes, although it has superior characteristics. As well, laser cutting process is highly non-linear complex process which involves several process variables. With attention of many process variables, it is difficult to develop a precise functional relationship between input and output variables. Therefore, the aim of present work to predict the performance characteristics of kerf deviation and metal removal rate on the Nd-YAG laser cutting of Titanium (Ti-6Al-4V) super alloy sheet using fuzzy and regression modeling techniques. The pulse width, pulse energy, cutting speed and gas pressure were considered as process state variables. The experiments were conducted using RSM based box-behnken design methodology. A fuzzy rule based models were developed to predict the responses. The predicted fuzzy and regression results were compared and examined with experimental results. It is remarkable that, obtained R2 and average error values for each response are very consistent with small variations. Thus, the developed fuzzy model can be effectively used to predict laser cutting parameters in automated manufacturing environments to reduce the complexity of process planning activities.


1995 ◽  
Vol 117 (3) ◽  
pp. 331-339 ◽  
Author(s):  
R. Kovacevic ◽  
C. Cherukuthota ◽  
R. Mohan

During machining, due to relative motion between tool and workpiece, severe thermal/frictional conditions exist at the tool-chip interface. Metal machining processes can be more efficient in terms of increasing the metal removal rate and lengthening tool life, if the thermal/frictional conditions are controlled effectively. A high pressure waterjet assisted coolant/lubricant system that can be used in conjunction with rotary tools (e.g., face milling) is developed here. The performance of this system is evaluated in terms of cutting force, surface quality, tool wear, and chip shape. The improvement in the effectiveness of the developed system with increase in water pressure and orifice diameter is also investigated. Stochastic modeling of the surface profile is performed to obtain more information about the role of waterjet in the machining process.


2019 ◽  
Vol 8 (2) ◽  
pp. 6508-6515

Today, the appropriate use of precision machining to produce three dimensional miniaturized structures or micro devices is another challenging task. Thus, presently miniaturization has emerged as a thrust area of research. The micro components are normally provided with micro channels which are created by using micro tools with the help of nonconventional machining processes. The aim of this paper is to examine machining performance of making micro channels in pure-Ti using ultrasonic machining. The effect of abrasive type, power rating, slurry concentration, feed rate and abrasive size has been investigated on responses namely metal removal rate (MRR) and surface roughness (SR). Taguchi based L18 (mixed level) orthogonal array is selected for the planning of experiments. Finally, the validation experiments have been performed at suggested optimal settings for result reproducibility.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
T. Praveena Gopinath ◽  
J. Prasanna ◽  
C. Chandrasekhara Sastry ◽  
Sandeep Patil

Abstract An attempt has been made to study the influence of magnetic field on the micro hole machining of Ti-6Al-4V titanium alloy using electrochemical micromachining (ECMM) process. The presence of magneto hydro dynamics (MHD) is accomplished with the aid of external magnetic field (neodymium magnets) in order to improve the machining accuracy and the performance characteristics of ECMM. Close to ideal solution for magnetic and nonmagnetic field ECMM process, the parameters used are as follows: concentration electrolyte of 15 g/l; peak current of 1.35 A; pulse on time of 400 s; and duty factor of 0.5. An improvement of 11.91–52.43% and 23.51–129.68% in material removal rate (MRR) and 6.03–21.47% and 18.32–33.09% in overcut (OC) is observed in ECMM of titanium alloy under the influence of attraction and repulsion magnetic field, respectively, in correlation with nonmagnetic field ECMM process. A 55.34% surface roughness factor reduction is ascertained in the hole profile in magnetic field-ECMM in correlation with electrochemical machined titanium alloy under nonmagnetic field environment. No machining related stress is induced in the titanium alloy, even though environment of electrochemical machining process has been enhanced with the presence of magnetic field. A slight surge in the compressive residual factor, aids in surge of passivation potential of titanium alloy, resulting in higher resistance to outside environment.


Author(s):  
Hardik Beravala ◽  
Pulak M Pandey

In the present research work, an attempt has been made to develop the mathematical model to predict the material removal rate in the electrical discharge machining process when the assistance of air and magnetic field is provided together. The proposed model incorporates the physical phenomenon occurred during electrical discharge machining such as the plasma column expansion and reduction in the mean free path of electron in the plasma column due to magnetic field. In addition, the model incorporates the effect of air on the material removal rate. The developed model correlates the material removal rate with the process parameters such as the peak current, pulse duration, duty cycle, air pressure and magnetic flux density. The experimental data were used to evaluate the constants for district processing conditions. The relation between air pressure and breakdown voltage in the liquid-air mixed dielectric has been established experimentally. The obtained expression of material removal rate has been validated for the experimental conditions other than that used for obtaining constants. The results show less than 10% error in the prediction by the model over the respective experimental values.


Sign in / Sign up

Export Citation Format

Share Document