Adsorption of Cesium from Aqueous Solution by Modified Montmorillonite

2013 ◽  
Vol 395-396 ◽  
pp. 591-594
Author(s):  
Si Man Liu ◽  
Yong Zhou Quan

The modified montmorillonite is used to adsorb cesium ions from aqueous solution. The influence factors such as adsorption time, adsorption temperature, adsorption pH, adsorbent dosage and initial concentration was studied in the experiment. The results show the optimum adsorption time is 100 min, the best adsorption temperature is 50 °C, and pH value is 10. When the concentration of cesium ions is 160 mg/L, the adsorption capacity can be up to 9.217 mg/g.

2011 ◽  
Vol 356-360 ◽  
pp. 493-497 ◽  
Author(s):  
Zong Ning Li ◽  
Zong Qiang Zhu ◽  
Mei Na Liang ◽  
Hong Dong Qin ◽  
Yi Nian Zhu

The influences of adsorption temperature, adsorption time, dosing quantity, adsorption environment pH value, initial concentration and bamboo charcoal type on adsorption of bamboo charcoal adsorb ammonia nitrogen in wastewater are studied. The result shows that the maximum adsorption values are 1.1715 mg/g and 0.9115 mg/g respectively at 25°C and 40°C. Bamboo charcoal can easily absorb ammonia nitrogen at low temperature condition. 180 min is a suitable adsorption time. Increasing bamboo charcoal dosing quantity is helpful to improve efficiencies of ammonia nitrogen removal in wastewater, but the adsorption capacity is declining as bamboo charcoal dosing quantity increasing. Solution pH value has a great impact on the adsorbed amount, the adsorbed effect in alkaline solution is much better than in acid one’s. The adsorption ability of the moderate temperature bamboo charcoal is higher than the high temperature one’s.


2011 ◽  
Vol 236-238 ◽  
pp. 2574-2580
Author(s):  
Ming Hua Liu ◽  
Piao Piao Huang ◽  
Jian Yun Ou

The spherical chitosan adsorbent was prepared by graft copolymerization of acrylic acid onto the cross-linked spherical chitosan beads, and then was adopted to adsorb the L-histidine. The adsorption conditions, i.e., solution pH, adsorption time, initial concentration and adsorption temperature were optimized. The spherical chitosan adsorbent showed excellent equilibrium adsorption capacity of 78.3 mg/g for the L-histidine when the solution pH value was 7.5, adsorption time was 180 min, initial concentration was 1500 mg/L and the adsorption temperature was 25 °C. Moreover, the inorganic salt of NaCl also showed great effect on the equilibrium adsorption capacity exceeding 0.8 mol/L. The static adsorption processes followed the Langmuir adsorption isothermal equation and Freundlich adsorption isothermal equation. Furthermore, L-histidine could be desorbed with 1.5 mol/L of ammonia solution, and the regeneration capacity of the spherical chitosan adsorbent was excellent.


2012 ◽  
Vol 588-589 ◽  
pp. 47-50
Author(s):  
Ze Sheng Cheng ◽  
Zhen Wang ◽  
Yu Liu ◽  
Na Na Bo

Alkali lignin, Modification, Quaternary ammonium salt, Cr(Ⅵ), Anion adsorbent Abstract. LIA(lignin ionic adsorbent) was synthesized by modified alkali lignin after reaction with epichlorohydrin and dimethylamine or diethylamine by using the modifying agents of N-methylmorpholine (NMM) in the presence of organic medium of N,N-dimethylformamide(DMF). The LIA was characterized by FTIR spectroscopy and elements analysis, the yield of products and the adsorbent capabilities for Cr(Ⅵ) from aqueous solution were also exploited. The factors that might influent the adsorption performance were investigated, such as adsorption time, reagent dosage and the initial concentration of Cr(Ⅵ). It was found that the efficiency of Cr(Ⅵ) removal were better when the amount of the sorbent was increased. But the removal efficiency was reduced as the initial concentration of Cr(Ⅵ) increased. The contrast result of the two synthesis processes also proved the yields of sample 3 (modified alkali lignin using diethylamine) was higher than sample 2 (modified alkali lignin using dimethylamine). And the adsorption capabilities of sample 3 were also better than sample 2.


2011 ◽  
Vol 233-235 ◽  
pp. 1560-1563
Author(s):  
Hai Rong Yin ◽  
Ming Zhen Yang ◽  
Tao Wang ◽  
Min Ge Feng

The adsorption of Cr6+ from aqueous solution by carbonate hydroxylapatite (CHAP) with different carbon content synthesized by precipitation. The CHAP was characterized and analyzed by TEM、FTIR and XRD. And adsorption was effected by the pH value、CHAP usage、adsorption time and other factors. The results show that under certain conditons, adsorption capacity enhanced with the carbon content increasing.


2011 ◽  
Vol 396-398 ◽  
pp. 2443-2446
Author(s):  
Neng Zhou ◽  
Zhen Zhou ◽  
Yuan Qin ◽  
Chu Jie Zeng ◽  
Zu Qiang Huang

This study reported the feasibility of adsorption of heavy metals using dry garlic stem, an environmentally-friendly and natural adsorbent.Using batch adsorption technique, the efficiency of the adsorbent was studied under different experimental conditions by varying parameters such as pH, initial concentration and contact time. The results show that at pH 2.03, adsorption temperature 35°C, the adsorption time 90 min and the amount of garlic stem 1.0 g, Pb2+ have the maximum adsorption capacity. The maximum adsorption capacity of the Pb2+ on garlic stem is 28.42 mg/g and the adsorption rate is 94.74%. At pH 4.05, the adsorption time 120 min and the amount of garlic stem 1.0, Cu2+ have the maximum adsorption at the same temperature. The maximum adsorption of the Cu2+ is 20.90 mg/g and the adsorption rate is 69.75%. The dry garlic stem was found to be efficient in removing lead and copper from aqueous solution as compared to other adsorbents already used for the removal of these ions.


2021 ◽  
Vol 290 ◽  
pp. 03021
Author(s):  
Meixue Xu ◽  
Kaifa Liao ◽  
Mouwu Liu ◽  
Yi Tan ◽  
Yanfei Wang

Poly (cyclotriphosphazene-co-4,4 '- diaminodiphenylsulfone) (PZD) microspheres were synthesi zed by precipitation polymerization of Hexachlorocyclotriphosphazene (HCCP) and polyfunctional organic monomers. The products were characterized by FTIR, SEM-EDS, XPS and bet. The adsorption behavior of PZD microspheres for uranium (VI) in aqueous solution and the influence of adsorption behavior were disc ussed. The results show that the PZD microspheres have a certain adsorption capacity for uranium (VI) in a queous solution. When pH = 3.5, adsorption time is 6h, solid-liquid ratio is 2.0g • L-1 and initial concentration of uranium (VI) is 30mg • L-1, the adsorption rate of uranium reaches the maximum.


2012 ◽  
Vol 610-613 ◽  
pp. 1540-1545
Author(s):  
Rui Yu Jia ◽  
You Hong Lin ◽  
Wei Zhang

Using modified flavedo as the adsorbent , the sorption process of Zn2+Superscript text by modified flavedo in wastewater containing heavymetals was studied. The effects of various factors in Zn2+Superscript text adsorption , such as adsorbtion time , temperature , pH value , initial Zn2+ concentration , and pretreatment,were analyzed. The results showed that the pretreatment of modified raised adsorption capacity , and the adsorption capacity was suitable for wastewater with a wide range of pH values. The rate of removal of Zn2+Superscript text reached 98% when the Zn2+ initial concentration was under 100mg/L. The optimal conditions for Zn2 + adsorptionSuperscript text by Modified orange peel were a wastewater pH value of 5.5 , at 25 °C, an adsorption time of 60 minutes , and a dosage of modacrylic flavedo of 2 g/ L.


2019 ◽  
Vol 6 (3) ◽  
pp. 181986 ◽  
Author(s):  
Pengfei Yang ◽  
Yuanhe Xu ◽  
Jie Tuo ◽  
Ang Li ◽  
LixiAng Liu ◽  
...  

Using pomelo peel's pulp (PPP) as raw material, a new chemically modified PPP was prepared by the process of fermentation, cooking, freeze-drying, and so on. The adsorbent has been characterized by EDS, IR, BET and SEM. The factors of different adsorption conditions such as pH value, adsorption temperature, mass of adsorbent, adsorption time and initial concentration of UO 2 2+ were investigated. The adsorption mechanism was explored by adsorption thermodynamics and kinetics experiments. The results indicate that the pH value is 6.0, the dosage of adsorbent is 500 mg l –1 , the temperature is 50°C and the adsorption time is 90 min, which is the best adsorption condition. When the initial concentration of UO 2 2+ is 35 mg l –1 , the adsorbed amount of uranyl ions by the modified PPP adsorbent can reach 42.733 mg g −1 , 26.8% higher than the adsorption amount of unmodified adsorbent (31.276 mg g −1 ), which is obviously enhanced. The kinetic and thermodynamic experiments show that the adsorption process is in good agreement with the pseudo second-order kinetics model, that it is an endothermic reaction, and the reaction is spontaneous. The adsorption process is entropy-dominated. The Freundlich adsorption isotherm can describe the adsorption process more accurately.


2014 ◽  
Vol 955-959 ◽  
pp. 2859-2863
Author(s):  
Xin Long Jiang ◽  
Yi Hua Jiang ◽  
Cheng Gang Cai

Abstract: Surface response optimization of adsorption conditions of neutral red wastewater by brewer's grains with the factors of pH value, initial concentration,adsorption temperature, adsorption time, adsorbent quantity and the response of adsorption rate were studied. The optimal parameters for adsorption conditions were of adsorbent concentration of 191.24 mg·L-1, adsorbent particle size of 60~80 mesh,pH 4.65, adsorbent amount of 2.56 g·L-1, adsorption time and temperature of 1.92 h and 30°C, respectively. The maximal absorption rate got 99.16%.The brewer's grains is a promising, cheap, efficient, new biological materials of adsorption for neutral red in wastewater.


2014 ◽  
Vol 529 ◽  
pp. 22-25 ◽  
Author(s):  
Li Wei Xie ◽  
Ze Long Xu ◽  
Yan Hua Huang ◽  
Shuang Cao ◽  
Zong Qiang Zhu ◽  
...  

Adsorption of ammonia nitrogen from aqueous solution onto the bagasse adsorbent has been investigated to evaluate the effects of Adsorbent dose, initial NH4+-N concentration, and pH on the removal systematically. With increasing initial concentration, the amount of ammonia nitrogen sorbed onto the adsorbent increased until it gradually decreased due to the initial concentration exceed 50 mg·L-1, and the maximum adsorption capacity was observed for the sample to be 1.31 mg·g-1 at the initial concentration of 30 mg·L-1, and the corresponding removal rates decreased from 94.01 to 3.89%, with increase in initial concentration from 5 to 100 mg·L-1. Adsorption capacities decreased from 6.04 to 0.49 mg·g-1 with increasing adsorbent dose from 0.1 to 1.5g. What’s more, under alkaline condition, the removal efficiency of ammonia nitrogen from aqueous solution onto the samples were superior to that under acidity and neutrality condition.


Sign in / Sign up

Export Citation Format

Share Document