Experimental Study of Short Column with Welded H-Sharped Steel Reinforced Concrete under Axial Compresion

2013 ◽  
Vol 405-408 ◽  
pp. 952-957
Author(s):  
Ying Zi Yin ◽  
Yan Zhang ◽  
Gen Tian Zhao

Abstract:In order to study Force Performance of new column, the paper describes and presents the results of nine stub-column tests performed on partially encased composite columns made with welded H-section steel. The test studies effect of column about ultimate strength in s steel ratio, wide-thickness ratio of wing, Space of Horizontal bar. Through anglicizing, ultimate strength of short column under axial compression in different steel ratio; influenced factors of ultimate strength of short column and directly effected column about ultimate strength.

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 329
Author(s):  
Jun Wang ◽  
Xinran Wang ◽  
Yuxin Duan ◽  
Yu Su ◽  
Xinyu Yi

At present, the existing standards (AISC360-16, EN1994-1-1:2004, and JGJ138-2016) lack relevant provisions for steel-reinforced concrete (SRC) composite columns with high-strength steel. To investigate the axial compressive mechanical performance of short high-strength steel-reinforced concrete (HSSRC) columns, the axial load test was conducted on 12 short composite columns with high-strength steel and ordinary steel. The influences of steel strength, steel ratio, and the section form of steel on the failure modes, bearing capacity, and ductility of the specimens were studied. Afterward, the experimental data were compared with the existing calculation results. The results show: compared with the specimens with Q235 steel, the bearing capacity of the specimens with Q460 steel increases by 7.8–15.3%, the bearing capacity of the specimens with Q690 steel increases by 13.2–24.1%, but the ductility coefficient increases by 15.2–202.4%; with the increase of steel ratio, the bearing capacity and ductility of specimens are significantly improved. A change of the steel cross-section could influence the ductility of SRC columns more than their bearing capacity. Moreover, the calculation results show that present standards could not predict the bearing capacity of HSSRC columns. Therefore, a modified method for determining the effective strength of steel equipped in HSSRC columns was proposed. The results of the ABAQUS simulation also showed that the addition of steel fibers could significantly improve the bearing capacity of Q690 HSSRC columns. The research results provide a reference for engineering practices.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6860
Author(s):  
Jun Wang ◽  
Yuxin Duan ◽  
Yifan Wang ◽  
Xinran Wang ◽  
Qi Liu

To investigate the applicability of the methods for calculating the bearing capacity of high-strength steel-reinforced concrete (SRC) composite columns according to specifications and the effect of confinement of stirrups and steel on the bearing capacity of SRC columns. The axial compression tests were conducted on 10 high-strength SRC columns and 4 ordinary SRC columns. The influences of the steel strength grade, the steel ratio, the types of stirrups and slenderness ratio on the bearing capacity of such members were examined. The analysis results indicate that using high-strength steel and improving the steel ratio can significantly enhance the bearing capacity of the SRC columns. When the slenderness ratio increases dramatically, the bearing capacity of the SRC columns plummets. As the confinement effect of the stirrups on the concrete improves, the utilization ratio of the high-strength steel in the SRC columns increases. Furthermore, the results calculated by AISC360-19(U.S.), EN1994-1-1-2004 (Europe), and JGJ138-2016(China) are too conservative compared with test results. Finally, a modified formula for calculating the bearing capacity of the SRC columns is proposed based on the confinement effect of the stirrups and steel on concrete. The results calculated by the modified formula and the finite element modeling results based on the confinement effect agree well with the test results.


2002 ◽  
Vol 29 (6) ◽  
pp. 911-918 ◽  
Author(s):  
Craig Giaccio ◽  
Riadh Al-Mahaidi ◽  
Geoff Taplin

This paper presents results of an experimental investigation into the effect of flange geometry on the shear strength of point-loaded, reinforced concrete T-beams. A procedure to normalise the ultimate strength and calculate a concrete contribution is implemented. This is used to discuss the effect of varying the ratio of flange width to web width and the ratio of flange depth to effective depth on the shear strength of a reinforced concrete T-beam. An increase in the ratio of flange width to web width is shown to produce an accompanying increase in the ultimate strength of a reinforced concrete T-beam, providing the ratio of flange depth to effective depth is above a certain minimum value. This increase in shear resistance with an increase in the ratio of flange width to web width continues until the flange is wide enough to allow formation of a failure mechanism whereby the load point punches through the flange.Key words: shear, T-beams, flange, reinforcing, strength, failure mechanisms.


Sign in / Sign up

Export Citation Format

Share Document