scholarly journals The Investigation on Mechanical Performances of High-Strength Steel Reinforced Concrete Composite Short Columns under Axial Load

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 329
Author(s):  
Jun Wang ◽  
Xinran Wang ◽  
Yuxin Duan ◽  
Yu Su ◽  
Xinyu Yi

At present, the existing standards (AISC360-16, EN1994-1-1:2004, and JGJ138-2016) lack relevant provisions for steel-reinforced concrete (SRC) composite columns with high-strength steel. To investigate the axial compressive mechanical performance of short high-strength steel-reinforced concrete (HSSRC) columns, the axial load test was conducted on 12 short composite columns with high-strength steel and ordinary steel. The influences of steel strength, steel ratio, and the section form of steel on the failure modes, bearing capacity, and ductility of the specimens were studied. Afterward, the experimental data were compared with the existing calculation results. The results show: compared with the specimens with Q235 steel, the bearing capacity of the specimens with Q460 steel increases by 7.8–15.3%, the bearing capacity of the specimens with Q690 steel increases by 13.2–24.1%, but the ductility coefficient increases by 15.2–202.4%; with the increase of steel ratio, the bearing capacity and ductility of specimens are significantly improved. A change of the steel cross-section could influence the ductility of SRC columns more than their bearing capacity. Moreover, the calculation results show that present standards could not predict the bearing capacity of HSSRC columns. Therefore, a modified method for determining the effective strength of steel equipped in HSSRC columns was proposed. The results of the ABAQUS simulation also showed that the addition of steel fibers could significantly improve the bearing capacity of Q690 HSSRC columns. The research results provide a reference for engineering practices.

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6860
Author(s):  
Jun Wang ◽  
Yuxin Duan ◽  
Yifan Wang ◽  
Xinran Wang ◽  
Qi Liu

To investigate the applicability of the methods for calculating the bearing capacity of high-strength steel-reinforced concrete (SRC) composite columns according to specifications and the effect of confinement of stirrups and steel on the bearing capacity of SRC columns. The axial compression tests were conducted on 10 high-strength SRC columns and 4 ordinary SRC columns. The influences of the steel strength grade, the steel ratio, the types of stirrups and slenderness ratio on the bearing capacity of such members were examined. The analysis results indicate that using high-strength steel and improving the steel ratio can significantly enhance the bearing capacity of the SRC columns. When the slenderness ratio increases dramatically, the bearing capacity of the SRC columns plummets. As the confinement effect of the stirrups on the concrete improves, the utilization ratio of the high-strength steel in the SRC columns increases. Furthermore, the results calculated by AISC360-19(U.S.), EN1994-1-1-2004 (Europe), and JGJ138-2016(China) are too conservative compared with test results. Finally, a modified formula for calculating the bearing capacity of the SRC columns is proposed based on the confinement effect of the stirrups and steel on concrete. The results calculated by the modified formula and the finite element modeling results based on the confinement effect agree well with the test results.


2012 ◽  
Vol 446-449 ◽  
pp. 981-988
Author(s):  
Zhen Bao Li ◽  
Wen Jing Wang ◽  
Wei Jing Zhang ◽  
Yun Da Shao ◽  
Bing Zhang ◽  
...  

Axial compression experiments of four full-scale reinforced concrete columns of two groups were carried out. One group of three columns used high-strength steel with the yield strength of 1000MPa as reinforcement hoops, and the second group used the ordinary-strength steel with yield strength of 400MPa. The axial compressive performances between these two groups were assessed. Compared to the specimen using the ordinary-strength steel, the axial compressive bearing capacity of using the high strength steel dose not increase significantly, while the deformation ability increases greatly. The results also indicate that the stress redistributions of the hoops and the concrete sections are obvious, and long-lasting when specimens achieve the ultimate bearing capacity after the yield of the rebar and local damage of concrete materials, at this time the strain of the specimens developes a lot, especially stress - strain curves of speciments with high-strength hoop all show a wide and flat top.


2013 ◽  
Vol 405-408 ◽  
pp. 952-957
Author(s):  
Ying Zi Yin ◽  
Yan Zhang ◽  
Gen Tian Zhao

Abstract:In order to study Force Performance of new column, the paper describes and presents the results of nine stub-column tests performed on partially encased composite columns made with welded H-section steel. The test studies effect of column about ultimate strength in s steel ratio, wide-thickness ratio of wing, Space of Horizontal bar. Through anglicizing, ultimate strength of short column under axial compression in different steel ratio; influenced factors of ultimate strength of short column and directly effected column about ultimate strength.


2014 ◽  
Vol 638-640 ◽  
pp. 101-104
Author(s):  
Yi Liang Peng ◽  
Guo Tian Li ◽  
Xuan Min Han ◽  
Lei Chen

With the rapid development of power transmission and transformation projects in China, steel supporting structure has already became the most popular structural form for these structures. However, the limit of steel grade used for current substation supporting structures is normally Q420, compared with that of Q690 used in other countries. When the high-strength steel is used, the geometric parameters of section for members become smaller, and the stability of members is the most important factors to influence the bearing capacity of structures. The stability factor for axial loaded steel members in current 《Code for design of steel structures》(GB50017-2003) was derived based on the experimental results for steel members with lower steel grade, the results are inevitably different from those for high-strength steel members. To make the calculations of Q690 high-strength steel tubes more accurate and reasonable, this paper conducts experimental study on the bearing capacity of Q690 high-strength steel tubes under axial load to provide scientific basis for practical design of these structures.


2015 ◽  
Vol 78 ◽  
pp. 142-154 ◽  
Author(s):  
Qingfeng Xu ◽  
Chongqing Han ◽  
Yong C. Wang ◽  
Xiangmin Li ◽  
Lingzhu Chen ◽  
...  

2013 ◽  
Vol 438-439 ◽  
pp. 519-521
Author(s):  
Cheng Zhu Qiu

t is essential to study the performance of reinforced concrete short column. In this paper, the main reinforcements and hoopings in short columns were replaced by C-BAR reinforcements, the regularity of reinforcing bar replaced by C-BAR reinforcements was summarized. The results show that the axial compression bearing capacity of concrete short column is increased.


2011 ◽  
Vol 255-260 ◽  
pp. 45-48 ◽  
Author(s):  
Ya Feng Xu ◽  
Xin Zhao ◽  
Yi Fu

Based on experimental research, the bearing performance of the new column (steel tube-reinforced concrete composite columns combination strengthened with angle steel and CFRP) has been studied in detail by finite element method. A finite element model is established based on a series of assumption. The load-displacement curves are obtained. The influence of steel ratio and thickness of CFRP layers to the bearing capacity is analyzed too. The result shows that both the steel ratio and the thickness of CFRP layers have great contribution to the axial load capacity. The finite element analysis results and theoretical analysis which are in good agreement show that simulation results are generally right.


Sign in / Sign up

Export Citation Format

Share Document