Seismic performance of steel-reinforced concrete composite columns in existing and modern construction

2021 ◽  
Vol 151 ◽  
pp. 106945
Author(s):  
Wael M. Hassan ◽  
Mayer Farag
2013 ◽  
Vol 353-356 ◽  
pp. 1990-1999
Author(s):  
Yi Sheng Su ◽  
Er Cong Meng ◽  
Zu Lin Xiao ◽  
Yun Dong Pi ◽  
Yi Bin Yang

In order to discuss the effect of different concrete strength on the seismic behavior of the L-shape steel reinforced concrete (SRC) short-pier shear wall , this article analyze three L-shape steel reinforced concrete short-pier shear walls of different concrete strength with the numerical simulation software ABAQUS, revealing the effects of concrete strength on the walls seismic behavior. The results of the study show that the concrete strength obviously influence the seismic performance. With the concrete strength grade rise, the bearing capacity of the shear wall becomes large, the ductility becomes low, the pinch shrinkage effect of the hysteresis loop becomes more obvious.


2011 ◽  
Vol 255-260 ◽  
pp. 2421-2425
Author(s):  
Qiu Wei Wang ◽  
Qing Xuan Shi ◽  
Liu Jiu Tang

The randomness and uncertainty of seismic demand and structural capacity are considered in demand-capacity factor method (DCFM) which could give confidence level of different performance objectives. Evaluation steps of investigating seismic performance of steel reinforced concrete structures with DCFM are put forward, and factors in calculation formula are modified based on stress characteristics of SRC structures. A regular steel reinforced concrete frame structure is analyzed and the reliability level satisfying four seismic fortification targets are calculated. The evaluation results of static and dynamic nonlinear analysis are compared which indicates that the SRC frame has better seismic performance and incremental dynamic analysis could reflect more dynamic characteristics of structures than pushover method.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6860
Author(s):  
Jun Wang ◽  
Yuxin Duan ◽  
Yifan Wang ◽  
Xinran Wang ◽  
Qi Liu

To investigate the applicability of the methods for calculating the bearing capacity of high-strength steel-reinforced concrete (SRC) composite columns according to specifications and the effect of confinement of stirrups and steel on the bearing capacity of SRC columns. The axial compression tests were conducted on 10 high-strength SRC columns and 4 ordinary SRC columns. The influences of the steel strength grade, the steel ratio, the types of stirrups and slenderness ratio on the bearing capacity of such members were examined. The analysis results indicate that using high-strength steel and improving the steel ratio can significantly enhance the bearing capacity of the SRC columns. When the slenderness ratio increases dramatically, the bearing capacity of the SRC columns plummets. As the confinement effect of the stirrups on the concrete improves, the utilization ratio of the high-strength steel in the SRC columns increases. Furthermore, the results calculated by AISC360-19(U.S.), EN1994-1-1-2004 (Europe), and JGJ138-2016(China) are too conservative compared with test results. Finally, a modified formula for calculating the bearing capacity of the SRC columns is proposed based on the confinement effect of the stirrups and steel on concrete. The results calculated by the modified formula and the finite element modeling results based on the confinement effect agree well with the test results.


2012 ◽  
Vol 256-259 ◽  
pp. 2063-2066
Author(s):  
Hui Ma ◽  
Jian Yang Xue ◽  
Xi Cheng Zhang ◽  
Zong Ping Chen

In order to evaluate whether concrete with recycled coarse aggregate can be applied for steel reinforced concrete (SRC) under the earthquake, low cyclic loading tests of SRC with different recycled coarse aggregate (RCA) replacement percentage were carried out in this paper. Based on the tests of three SRRC column specimens, the failure modes, the hysteresis curves, the skeleton curves, the ductility, and the stiffness degradation of SRRC columns are investigated. The influence of variation in the RCA replacement percentage on the SRRC column is analyzed in detail. Test results show that the seismic performance of SRRC column is reduced to an allowable extent with the increasing magnitude of the RCA replacement percentage. The SRRC column still has a good seismic performance and the recycled coarse aggregate can be applied for steel reinforced concrete through the proper design.


2013 ◽  
Vol 405-408 ◽  
pp. 952-957
Author(s):  
Ying Zi Yin ◽  
Yan Zhang ◽  
Gen Tian Zhao

Abstract:In order to study Force Performance of new column, the paper describes and presents the results of nine stub-column tests performed on partially encased composite columns made with welded H-section steel. The test studies effect of column about ultimate strength in s steel ratio, wide-thickness ratio of wing, Space of Horizontal bar. Through anglicizing, ultimate strength of short column under axial compression in different steel ratio; influenced factors of ultimate strength of short column and directly effected column about ultimate strength.


2014 ◽  
Vol 638-640 ◽  
pp. 127-131 ◽  
Author(s):  
Ping Guan ◽  
Lan Xiang Chen

In order to exert the force performance of steel tubular columns filled with steel-reinforced concrete, the focus of the paper is about the influence of load condition on flexural mechanical properties and the shear mechanical properties of the composite columns. The two types of loading conditions are: 1.Steel pipe, steel placed in the steel tube and concrete subject to compressive load simultaneously; 2.Compressive load acts on steel and concrete. The results show that the calculated results based on ADINA and the experimental ones are in agreement well. The calculated results also show that the load condition has no influence on flexural mechanical properties, but has a great influence on shear mechanical properties of the composite columns.


Sign in / Sign up

Export Citation Format

Share Document