Effects of Enzymatic Hydrolysis Conditions on the Antioxidant Activity of Red Tilapia (Oreochromis spp.) Viscera Hydrolysates

2020 ◽  
Vol 21 (12) ◽  
pp. 1249-1258
Author(s):  
Cindy T. Sepúlveda ◽  
José E. Zapata

Background: Fish is an essential source of nutrients for human nutrition due to the composition of proteins, vitamins, and minerals, among other nutrients. Enzymatic hydrolysis represents an alternative for the use of by-products of the aquaculture industry. Objective: We propose to evaluate the effect of stirring speed, temperature, and initial protein concentration on the degree of hydrolysis of proteins and antioxidant activity of red tilapia (Oreochromis spp.) viscera hydrolysates. Methods: The effect of stirring speed, temperature, and initial protein concentration on the degree of hydrolysis of proteins and antioxidant activity was evaluated using an experimental design that was adjusted to a polynomial equation. The hydrolysate was fractioned to determine the antioxidant activity of the fractions, and functional properties were also measured. Results: Stirring speed and protein concentration presented a statistically significant effect (p <0.05) on all the response variables. However, the temperature did not present a statistically significant effect on the degree of hydrolysis. Discussion: The best conditions of hydrolysis were stirring speed of 51.44 rpm, a temperature of 59.15°C, and the protein concentration of 10 g L-1. The solubility of the hydrolysate protein was high at different pH, and the hydrolysate fraction with the highest antioxidant activity has a molecular weight <1 kDa. Conclusion: The degree of hydrolysis and the biological activity of red tilapia viscera hydrolysates (Oreochromis spp.) are affected by temperature, substrate concentration, and stirring speed. The optimal conditions of hydrolysis allowed to obtain a hydrolysate with antioxidant activity are due to the peptides with low molecular weight.

2013 ◽  
Vol 411-414 ◽  
pp. 3205-3209
Author(s):  
Fang Qian ◽  
Lei Zhao ◽  
Shu Juan Jiang ◽  
Guang Qing Mu

Based on single factor analysis for the enzymatic hydrolysis of whey protein, papain was selected as the optimal enzyme and its enzymatic hydrolysis conditions were optimized by the quadratic regression orthogonal rotary test. The orthogonal regression model for degree of hydrolysis (DH) to three factors including temperature (X1), time (X2), enzyme dosage (X3) was established as follow: DH=10.40+0.22X1+0.30X2+1.31X3+0.019X1X2+0.011X1X3-0.039X2X3-0.39X12-0.16X22-0.40X32, Verification test showed a DH of 11.7% was obtained at the optimal hydrolysis condition of 56.6°C, 113.8 min and enzyme 8213.7 U /g protein, which basically consisted with the model theoretical value.


2012 ◽  
pp. 33-41 ◽  
Author(s):  
Zorica Knezevic-Jugovic ◽  
Andrea Stefanovic ◽  
Milena Zuza ◽  
Stoja Milovanovic ◽  
Sonja Jakovetic ◽  
...  

The objectives of this study were to examine the effect of sonication and high-pressure carbon dioxide processing on proteolytic hydrolysis of egg white proteins and antioxidant activity of the obtained hydrolysates. It appeared that the ultrasound pretreatment resulted in an increase in the degree of hydrolysis of the enzymatic reaction while the high-pressure carbon dioxide processing showed an inhibition effect on the enzymatic hydrolysis of egg white proteins to some extent. The antioxidant activity of the obtained hydrolysates was improved by ultrasound pretreatment of egg white proteins at the pH 8.3. Thus, the combination of ultrasound pretreatment at the pH 8.3 and subsequent enzymatic hydrolysis with alcalase at 50?C and pH 8.0 could offer a new approach to the improvement of the functional properties of egg white proteins and their biological activity.


2021 ◽  
Vol 302 ◽  
pp. 02010
Author(s):  
Pratchaya Muangrod ◽  
Wiriya Charoenchokpanich ◽  
Vilai Rungsardthong ◽  
Savitri Vatanyoopaisarn ◽  
Benjamaporn Wonganu ◽  
...  

Edible jellyfish have been consumed as food for more than a century with offering high protein and crunchy texture. The pepsin hydrolysis of jellyfish protein yields jellyfish protein hydrolysate (ep-JPH), reported for potential bioactivities such as antioxidant activity or antihypertensive activities. Due to the substantial number of by-products generated from jellyfish processing, the by-products were then selected as a raw material of JPH production. This research aimed to evaluate the effect of the hydrolysis time of pepsin on the antioxidant activity of ep-JPH. The dried desalted jellyfish by-products powder was enzymatically hydrolysed by 5% (w/w) pepsin, and the hydrolysis time was varied from 6, 12, 18, and 24 h at 37oC. Results showed that increased hydrolysis time increased the degree of hydrolysis (DH) and inhibition of DPPH radical. The 24 h ep-JPH possessed the highest DH and the highest inhibitory effect of DPPH radical. The results demonstrated that, in this experiment, all ep-JPHs were DPPH radical scavengers, exhibiting different inhibition activities depending on DH values.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Yanbin Zheng ◽  
Qiushi Chen ◽  
Anshan Shan ◽  
Hao Zhang

For utilizing the blood cells (BCs) effectively, enzymatic hydrolysis was applied to produce the enzymatically hydrolyzed blood cells (EHBCs) by using a neutral protease as a catalyst. The results of the single-factor experiments showed optimal substrate concentration, enzyme to substrate ratio (E/S), pH, temperature, and incubation period were 1.00%, 0.10, 7.00, 50.00°C, and 12.00 h, respectively. The optimized hydrolysis conditions from response surface methodology (RSM) were pH 6.50, E/S 0.11, temperature 45.00°C, and incubation period 12.00 h. Under these conditions (substrate concentration 1.00%), the degree of hydrolysis (DH) was 35.06%. The free amino acids (FAAs) content of the EHBCs (35.24%) was 40.46 times higher than BCs while the total amino acids (TAAs) content was lower than BCs. The scores of lysine (human 0.87; pig 0.97), valine (human 1.42; pig 1.38), leucine (human 1.50; pig 1.90), tyrosine (human 0.84; pig 1.09), and histidine (human 2.17; pig 2.50) indicated that the EHBCs basically fulfilled the adult human and pig nutritional requirements. The calculated protein efficiency ratios (C-PERs) of the EHBCs were 3.94, 6.19, 21.73, and 2.04. In summary, the EHBCs were produced successfully with optimized conditions and could be a novel protein source for humans and pigs.


Food Research ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 153-162
Author(s):  
M.K. Zainol ◽  
F.W. Abdul Sukor ◽  
A. Fisal ◽  
T.C. Tuan Zainazor ◽  
M.R. Abdul Wahab ◽  
...  

This study was aimed to optimise the Alcalase® enzymatic hydrolysis extraction of Asiatic hard clam (AHC) (Meretrix meretrix) protein hydrolysate in terms of hydrolysis time, hydrolysis temperature, hydrolysis pH, and concentration of enzyme. Protein hydrolysate produced from AHC (M. meretrix) meat was used to determine the optimum hydrolysis conditions. Hydrolysis of AHC meat was optimised using the Central Composite Design Response Surface Methodology (RSM) (CCD). The relationship between four parameters such as temperature (45 – 65°C), enzyme to substrate concentration (1 – 2%), hydrolysis time (60 – 180 mins), and pH (7.5 – 9.5) to the degree of hydrolysis was investigated. The optimum conditions for enzymatic hydrolysis of AHC meat to achieve the maximum degree of hydrolysis (DH) were observed at 65°C, enzyme to substrate concentration of 1%, hydrolysis time of 60 mins, and pH 7.5. The enzymatic protein hydrolysis of AHC meat was predicted using a two factors interaction (2FI) model. Under these optimum conditions, DH's predicted value was 97.41%, which was close to the experimental value (97.89%). The freeze-dried protein hydrolysate powder was characterized concerning the proximate composition. Proximate analysis revealed that the AHC meat contains 7.92±1.76% of moisture, 2.23±0.89% of crude fat, 1.98±0.82 of ash, and 10.53±0.04% of crude protein. While the Asiatic hard clam protein hydrolysate (AHCPH) composed 9.12±0.02% of moisture, 0.80±0.29% of crude fat, and 27.76±0.10% of ash. The protein hydrolysate produced also contained high protein content (50.09±0.88%) and may serve as a good protein source.


Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 187
Author(s):  
Michael Josias Woods ◽  
Louwrens Christiaan Hoffman ◽  
Elsje Pieterse ◽  
Neill Jurgens Goosen

Abstract: Insects have the ability to convert biowaste into valuable functional compounds, such as proteins, fat and chitin. Currently, unlike with conventional commodities, there are few fractionation methods to isolate these compounds for diversification of use. Enzymatic hydrolysis is a possible method to fractionate Hermetia illucens larvae, into protein, fat and chitin. This method is a particularly attractive due to the milder process conditions required compared to chemical methods, the relative ease to control the reaction and minimal formation of unpalatable and toxic by-products. A central composite design was used to help identify the optimum hydrolysis conditions for fractionation. At these conditions the fat recovery was ?~81%; substantially more than previous attempts and the fatty acid profile stayed unchanged from the original larvae material. The protein solubility was ~57%, with a degree of hydrolysis of ~22%, and was on par with previous studies. The amino acid profile of the soluble proteins differed from the original larvae material with a slight decrease in the ratio of essential to total amino acids. The insoluble proteins were accounted for with the chitin. A washing-and-sieving step, as means to recover the insoluble proteins from the chitin is envisaged. Also, the spray drying of the protein hydrolysate produced and its functional properties allows for future investigation. This technology allows for higher margins to be made, both environmentally as well as financially, compared to the use of the ‘intact’ biomass.


2013 ◽  
Vol 652-654 ◽  
pp. 435-438 ◽  
Author(s):  
Yong Sheng Ma ◽  
Lin Tong Wang ◽  
Xian Hui Sun ◽  
Bing Chen Ma ◽  
Jian Wen Zhang ◽  
...  

Soybean protein Alcalase hydrolysate was further hydrolyzed by adopting Flavourzyme. From this further hydrolysis reaction, bitter of soybean polypeptide mixture was reduced distinctly. The optimal hydrolysis conditions of Flavourzyme was determined as that pH was 7.0 at temperature 50°C and E/S(ratio of enzyme and substrate) was 20LAPU/g. Bitter taste value was reduced to 2 after Flavourzyme hydrolysis reaction for 2 hours in optimal hydrolysis conditions. The change of molecular weight distribution range from Alcalase hydrolysate to Flavourzyme hydrolysate was not obvious. DH (Degree of hydrolysis) of soybean protein hydrolysate was increased to 24.2% which was improved 3.5% than Alcalase hydrolysate. Protein recovery proportion was increased to 73.2% which was improved 0.8% than Alcalase hydrolysate.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3045
Author(s):  
Pedro Valencia ◽  
Silvana Valdivia ◽  
Suleivys Nuñez ◽  
Reza Ovissipour ◽  
Marlene Pinto ◽  
...  

The enzymatic hydrolysis of fish by-product proteins is traditionally carried out by mixing ground by-products with water. In addition, pH control is used to avoid pH drops. Higher costs are involved due to the use of pH control systems and the consequent energy cost in the drying stage. This work aimed to evaluate the effect of these conditions on the hydrolysis of salmon frame (SF) proteins, including the SF hydrolysis without added water. SF hydrolysis by subtilisin at 50, 75, and 100% SF under different pH regimes were evaluated by released α-amino (α-NH) groups, total nitrogen, degree of hydrolysis, and estimated peptide chain length (PCL) at 55 °C. The concentration of released α-NH groups was higher in the conditions with less added water. However, the nitrogen recovery decreased from 50 to 24% at 50 and 100% SF, respectively. Changing the SF/water ratio had a more significant effect than changing the pH regime. Estimated PCL changed from 5–7 to 7–9 at 50 and 100% SF, respectively. The operating conditions affected the hydrolysis performance and the molecular characteristics of the hydrolysate.


2018 ◽  
Vol 21 (3) ◽  
pp. 522 ◽  
Author(s):  
Dewi Mutamimah ◽  
Bustami Ibrahim ◽  
Wini Trilaksani

Tuna (Thunnus sp.) by-products from frozen loin and canning industry especially the eye is rich in proteins and in lipids consisting of polyunsaturated fatty acids (PUFA). That requires protective agent (antioxidant) to inhibit the oxidation naturally present and predicted to be protein peptides. Enzymatic hydrolysis of protein is an appropriate method to produce bioactive peptide with such nutraceutical/pharmaceutical function such as an antioxidant peptide. This study aimed to produce protein hydrolysate having a function as anwith an antioxidant activity from eye of tuna through enzymatic hydrolysis and determining the antioxidant activity by DPPH methods. Protein soluble content of tuna’s eye protein hydrolysate (TEPH) ranged from 59.98±0.130 to 94.90±0.002%. The degree of hydrolysis (DH) of TEPH was about 9.10±0.28 to 16.14±0.09%. The highest inhibition of DPPH radical scavenging activity was 93.57±0.05% (at 5 mg/mL) was obtained with a DH of 11.35±0.002% at the concentration 0.1% of papain for 6 hours hydrolysis. The IC50 value of was 1.08±0.008 mg/mL


2019 ◽  
Vol 15 (2) ◽  
pp. 144-153 ◽  
Author(s):  
Nathalia A. Gómez ◽  
Leidy J. Gómez ◽  
José E. Zapata

Background: The animal blood that is produced in a slaughterhouse is a potential source of inexpensive proteins used in the food industry around the world. However, 60% of it is surplus, and it ends with a negative environmental impact. Introduction: The enzymatic hydrolysis of proteins represents a good way to produce peptides with different biological activities. Methods: Enzymatic hydrolysis of bovine plasma with subtilisin at an alkaline pH and 61.5°C was performed using the pH-stat method. Experiments were conducted considering the effects of a high initial substrate concentration (So) and the enzyme/substrate ratio (E/S) minimizing the processing time necessary to obtain a specific degree of hydrolysis (DH). Results: The best conditions obtained were 42 g/L of So and 0.89 AU/g substrate of E/S until a DH of 20% in 11,1 ± 1,1 min was achieved to the tested conditions, which result in a fitted empirical polynomial equation of degree 3. Conclusion: A kinetic equation is established to relate the DH and the reaction time to a relative error of less than 5% in the fit, to obtain a good antioxidant product in an industrially interesting time. Additionally, the results suggest a good adjustment of the data with a determination coefficient (R2) of 0.9745 in validation.


Sign in / Sign up

Export Citation Format

Share Document