Study on Hydraulic Fracturing Affected by Horizontal Principal Stress

2013 ◽  
Vol 423-426 ◽  
pp. 1467-1470
Author(s):  
Bo Huang ◽  
Tian Hui Ma ◽  
Ai Shan Li ◽  
Jian Qiu Sun ◽  
Liao Yuan Zhang

Adopted with the actual value of statistic geo-stress, using RFPA software to simulate the hydraulic fracturing of underground. The sample is treated as elastomers and simplified into plane problem, submit strength, elastic modulus, poisson ratio to weibull distribution. It could be found in figures that the size, length, extending direction of two crack is not identical. The cracks` forms grow into symmetry horizontal double-wing crack from the final result, besides, crack propagation direction is perpendicular to the direction of the minimum principal stress.

2007 ◽  
Vol 348-349 ◽  
pp. 45-48
Author(s):  
Guido Dhondt

In recent years, increased loading and low weight requirements have led to the need for automatic crack tracing software. At MTU a purely hexahedral code has been developed in the nineties for Mode-I applications. It has been used extensively for all kinds of components and has proven to be very flexible and reliable. Nevertheless, in transition regions between complex components curved cracks have been observed, necessitating the development of mixed-mode software. Due to the curvature of the crack faces, purely hexahedral meshes are not feasible, and therefore a mixture of hexahedral elements at the crack tip, combined with tetrahedral in the remaining structure has been selected. The intention of the present paper is to compare both methods and to point out the strength and weaknesses of each regarding accuracy, complexity, flexibility and computing time. Furthermore, difficulties arising from the out-of-plane growth of the crack such as the determination of the crack propagation direction are discussed.


2020 ◽  
Vol 10 (3) ◽  
pp. 1153 ◽  
Author(s):  
Shirong Cao ◽  
Xiyuan Li ◽  
Zhe Zhou ◽  
Yingwei Wang ◽  
Hong Ding

Coalbed methane is not only a clean energy source, but also a major problem affecting the efficient production of coal mines. Hydraulic fracturing is an effective technology for enhancing the coal seam permeability to achieve the efficient extraction of methane. This study investigated the effect of a coal seam reservoir’s geological factors on the initiation pressure and fracture propagation. Through theoretical analysis, a multi-layered coal seam initiation pressure calculation model was established based on the broken failure criterion of maximum tensile stress theory. Laboratory experiments were carried out to investigate the effects of the coal seam stress and coal seam dip angle on the crack initiation pressure and fracture propagation. The results reveal that the multi-layered coal seam hydraulic fracturing initiation pressure did not change with the coal seam inclination when the burial depth was the same. When the dip angle was the same, the initiation pressure linearly increased with the reservoir depth. A three-dimensional model was established to simulate the actual hydraulic fracturing crack propagation in multi-layered coal seams. The results reveal that the hydraulic crack propagated along the direction of the maximum principal stress and opened in the direction of the minimum principal stress. As the burial depth of the reservoir increased, the width of the hydraulic crack also increased. This study can provide the theoretical foundation for the effective implementation of hydraulic fracturing in multi-layered coal seams.


2003 ◽  
Vol 76 (2) ◽  
pp. 386-405 ◽  
Author(s):  
Vladamir Kerchman ◽  
Cheng Shaw

Abstract IR thermography was used to measure surface temperature profiles of cylindrical rubber specimens during cyclic compression. A linearized constitutive approach and finite element analysis were used to evaluate heat generation and associated transient temperature fields. Modeled temperatures compared well with the IR measurements. This led to extended simulation efforts on lab fracture samples. IR thermography was used to measure temperature of filled NR and filled SBR specimens during tensile fatigue cut growth tests. Temperature gradients are expected to relate to kinetics of rubber fracture and identify regions within the sample that are undergoing accelerated damage. The following cut growth issues were addressed: 1) crack propagation direction in a non-uniform stress field; 2) crack propagation direction as a function of the angle of initial cuts; 3) initiation of crack branching; and 4) catastrophic failure. The nonlinear coupled mechanical and thermal FEA was used to evaluate the energy dissipation in the non-homogeneous cyclic deformation of cracked samples. Modeled and measured surface temperatures are in good agreement. Accounting for heat build-up ahead of an advancing crack can improve numerical models that quantify fatigue cut growth behavior in rubber compounds.


Author(s):  
Yukihiko Okuda ◽  
Yuuji Saito ◽  
Masayuki Asano ◽  
Masakazu Jimbo ◽  
Hiroshi Hirayama ◽  
...  

Recently, several cracks have been found on the weld joints of Boiling Water Reactor (BWR) core shrouds during inspection. In order to ensure the continuous operation of nuclear power plants, it is necessary to assess the structural integrity of core shrouds with cracks on the weld joints. In general, a crack propagates in a complicated manner according to three-dimensional stress field and it is difficult to predict crack propagation direction and crack shape change. Usually, half ellipsoid crack shape is assumed and the propagation of the crack is calculated in the constant direction for assessment. In this study, crack propagation analysis procedure using the Finite Element Method (FEM) is developed for general shaped crack, and the procedure is verified by experiments. In this procedure, it is assumed that the crack propagates according to the maximum J-integral under three-dimensional stress fields and the re-mesh technique is used in the FEM analysis in order to calculate crack shape variation during propagation. The fatigue crack propagation tests under cyclic tensile load were performed to verify the analysis procedure. The specimens are made of a plate from 316SS and designed to generate non-uniform stress distribution on the crack front in order to observe continuous crack propagation direction change.


Author(s):  
Yue Zhang ◽  
Jianfeng Shi ◽  
Jinyang Zheng

Electrofusion joint plays an important role in connecting polyethylene (PE) pipe. In our previous study, penetrating crack failure through the fitting with an angle of about 70° was observed, and axial stress was found to be an important factor in the crack propagation. In this paper, experiments were carried out to study the crack propagation phenomena of the electrofusion joint of PE pipe. Digital Image Correlation (DIC) method was used to measure the displacement on specimen’s surface, as well as full-field strain distribution, based on which the J-integral of the crack tip was calculated. Besides, a finite element numerical simulation was conducted, and its accuracy was verified by experimental J-integral value. Through combination of experimental observations and finite element method, the phenomenon that the angle between crack propagation direction and tube axial is about 70° is detailed analysed. By comparison and analysis of the testing results, critical J-integral value during crack propagation is determined. Furthermore, critical J-integral value of crack propagation in electrofusion joint is predicted.


Sign in / Sign up

Export Citation Format

Share Document