Preparation and Characterization of CA-PEI Double Modification Water-Based Magnetic Fluid

2013 ◽  
Vol 423-426 ◽  
pp. 151-154
Author(s):  
Xi Sheng He ◽  
Hui Qing Peng ◽  
Jin Li ◽  
Jun Dong

Fe3O4 magnetic nanoscale water-based magnetic fluid was fabricated by co-precipitation with citric acid (CA) and polyethylene amine (PEI) as dispersant. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscope (SEM) and vibrating sample magnetometer (VSM) were used to investigate the samples.The modified magenetic nanoparticles (MNPs) size of about 50nm and have a saturation magnetization about 0.25emu/g.These nanoparticles can be applied to the study of genophore.

2011 ◽  
Vol 338 ◽  
pp. 384-387
Author(s):  
Ye Ji ◽  
Hui Ping Shao ◽  
Zhi Meng Guo ◽  
Dong Hua Yang ◽  
Xiao Ting Liu

Nano-Fe3O4magnetic particles were prepared by ultrasonic emulsion method and then were dispersed into water with chitosan or folate as surfactants for biocompatible water-based Fe3O4magnetic fluid. The cubic inverse spinel structure of Fe3O4nanoparticles were analyzed by X-ray diffraction technique (XRD). The saturation magnetizations of different magnetic particles were tested by a vibrating sample magnetometer (VSM). The morphologies of nanoparticles were observed by transmission electron microscope (TEM). The particle size was about uniform 10-20 nm, and their shape was approximately spherical. Meanwhile, dispersity was improved markedly after the surface modification. Comparing to magnetic fluid with chitosan modification, magnetic fluid was coated with chitosan and folate gets higher dispersity and stability when both of them have same saturation magnetizations.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


2012 ◽  
Vol 174-177 ◽  
pp. 508-511
Author(s):  
Lin Lin Yang ◽  
Yong Gang Wang ◽  
Yu Jiang Wang ◽  
Xiao Feng Wang

BiFeO3 polyhedrons had been successfully synthesized via a hydrothermal method. The as-prepared products were characterized by power X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The possible mechanisms for the formation of BiFeO3 polyhedrons were discussed. Though comparison experiments, it was found that the kind of precursor played a key role on the morphology control of BiFeO3 crystals.


2000 ◽  
Vol 15 (10) ◽  
pp. 2076-2079
Author(s):  
Chika Nozaki ◽  
Takashi Yamada ◽  
Kenji Tabata ◽  
Eiji Suzuki

Synthesis of a rutile-type lead-substituted tin oxide with (110) face was investigated. The characterization was performed by x-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, infrared spectroscopy, x-ray photoelectron spectroscopy, and Brunauer–Emmett–Teller surface area measurements. The homogeneous rutile-type lead-substituted tin oxide was obtained until 4.1 mol% of tin was substituted with lead. The surface of obtained oxide had a homogeneously lead-substituted (110) face.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 537
Author(s):  
Jishuo Han ◽  
Guohua Li ◽  
Lin Yuan

Nanostructured hollow MgO microspheres were prepared by the template method. First, D-Anhydrous glucose was polymerized by the hydrothermal method to form a template. Second, a colorless solution was obtained by mixing magnesite with hydrochloric acid in a 1:2 proportion and heating in an 80 °C water bath for 2 h. Finally, the template from the first step was placed in the colorless solution, and the resulting precipitate was calcined at 550 °C for 2 h. The phase composition and microstructure of the calcined samples were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The XRD results indicated that the main crystal is periclase. The SEM results indicates that the template carbon microsphere surface is smooth, and the its size is uniform and concentrated in the range of 100–200 nm. The diameters of the samples range from 60 to 90 nm, which is smaller than the size of the carbon microsphere. The TEM results indicates that the sample is hollow with a shell thickness of about 6–10 nm. The specific surface area of the calcined hollow sphere is 59.5 m²·g−1.


2007 ◽  
Vol 119 ◽  
pp. 71-74 ◽  
Author(s):  
Yan Li ◽  
Xiao Li Zhang ◽  
Young Hwan Kim ◽  
Young Soo Kang

Co nanoparticles were synthesized via a solventless thermal decomposition of Co2+-oleate2. The crystalline structure is strongly affected by the thermal treatment of the Co nanoparticles. Further, the annealing also results in the decomposition of surfactant around Co particles. The size of nanoparticles was confirmed by transmission electron microscopy (TEM). The crystal structure of nanoparticles was characterized by X-ray diffraction pattern (XRD). The magnetic properties were characterized by vibrating sample magnetometer (VSM).


2013 ◽  
Vol 834-836 ◽  
pp. 350-355
Author(s):  
Shu Qiu Wang ◽  
Fan Hao Zeng ◽  
Jiang Feng Song ◽  
Xiao Fen Tan ◽  
Lin Wei Li

The quaternary TixZr1-xMnFe gettering alloys (x =0, 0.1, 0.2, 0.3 and 0.4) were synthesized successfully by arc melting and their phase structures along with microstructures had been investigated by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). It showed that the addition of Ti did not change the phase structure of ZrMnFe of C14 laves phase. XRD results showed that Ti successfully replaced part of the Zr and the decrease of interplanar spacing had a linear relationship with the increase of Ti content. The success of this trial preparation provides reference for nuclear industry gettering materials.


2011 ◽  
Vol 675-677 ◽  
pp. 835-838
Author(s):  
Jing Wang ◽  
Si Jing Fu ◽  
Hong Cheng

The present work reported the preparation of TiC/Fe-based composite by the synthesis reaction from Ti, C and Fe. The sintered composites were characterized by X-ray diffraction, scanning electron microscope and transmission electron microscope. TiC, Fe3C and α-Fe were detected by X-ray diffraction analysis. The scanning and transmission electron micrographs revealed the morphology and distribution of the reinforcements, the microstructure of Fe matrix, the interfacial structure of TiC particle-to-Fe matrix. Moreover, the formation reason of the voids in composite was also discussed.


2018 ◽  
Vol 912 ◽  
pp. 269-273
Author(s):  
José Costa de Macêdo Neto ◽  
João Evangelista Neto ◽  
Ricardo Wilson Cruz ◽  
Eduardo Rafael Barreda ◽  
Nayra Reis do Nascimento ◽  
...  

Polymer nanocomposites using natural clays such as nanofiller have mechanical properties, flame-retardant, the gas barrier improvement compared to polymers without nanoclay. The aim of this work is intercalated molecules between the clay layers and characterize it with a view to its use in polymer nanocomposites. The kaolinite neat and modified used was characterized by fourier transform spectroscopy (FTIR), X-ray diffraction (XDR), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and thermogravimetry (TGA). The results showed that kaolinite can be used as a nanofiller in polymer nanocomposites.


2016 ◽  
Vol 25 (6) ◽  
pp. 096369351602500 ◽  
Author(s):  
Ruimin Fu ◽  
Mingfu Zhu

Nowadays, the hummers method for preparation of graphene oxide (GO) was improved. The grapheme oxide @ Fe3O4 magnetic nanocomposites were synthesized by co-precipitation method. After analysing the morphology and structure of obtained nanocomposites by X-ray diffraction (XRD), transmission electron microscope (TEM) and Fourier transform infrared (FT-IR) spectroscopy, the result was shown as follows. The particle size of Fe3O4 in nanocomposites is 30 nm. Many functional groups are found in grapheme oxide, and such groups could be used to bind with the drug. In the test for magnetic properties, the nanocomposites gathered rapidly in the vicinity of the permanent magnet. The nanocomposites, with high superparamagnetism, can be used in the following applications: drug targeting transports, drug carrier, and diagnosis assistant system.


Sign in / Sign up

Export Citation Format

Share Document