Effects of PMDI Treatments on Thermal Properties of Silvergrass Reinforced High Density Polyethylene Composites

2013 ◽  
Vol 423-426 ◽  
pp. 84-88
Author(s):  
Dong Xue ◽  
Wang Wang Yu ◽  
Qin Liu ◽  
Lu Jing ◽  
Xue Jing Liu ◽  
...  

In this study, silvergrass (SV) reinforced high density polyethylene (HDPE) composites were prepared. The effects of polymeric methylene diphenyl diisocyanate (PMDI), slivergrass fibers (SV) content on the thermal, crystalline properties of wood plastic composites (WPCs) were investigated. It was found that Compared with the untreated WPCs, the thermal stability of the composites after incorporation of PMDI treated SV fibers was significantly improved. Moreover, the results show that with PMDI treated composites, SV was an effective heterogeneous nucleating agent.

2013 ◽  
Vol 750-752 ◽  
pp. 33-37
Author(s):  
Dong Xue ◽  
Wang Wang Yu ◽  
Jing Lu ◽  
Qin Liu ◽  
Xue Jing Liu ◽  
...  

In this study,silvergrass (SV) reinforced high density polyethylene (HDPE) composites (WPCs) were prepared by injection molding. The effects of maleated polyethylene (MAPE), Slivergrass fibers (SV) content on the thermal, crystalline properties of WPCs were investigated. It was found that compared with the untreated WPCs, the thermal stability of the composites after incorporation of MAPE was significantly improved. Moreover, the results show that with MAPE adding, SV was an effective heterogeneous nucleating agent.


2014 ◽  
Vol 1004-1005 ◽  
pp. 497-500
Author(s):  
Wang Wang Yu ◽  
Dong Xue

In this study, silvergrass (SV) reinforced high density polyethylene (HDPE) composites were prepared. The effects of slivergrass fibers (SV) content on the mechanical properties, crystalline properties of wood plastic composites (WPCs) before and after water absorption were investigated. It was found that compared with the untreated WPCs after immersed into water, the tensile strength of PMDI treated composites were higher. Silvergrass can be the nucleating agent with treated by PMDI. The Xc of PMDI treated WPCs after immersed into water was also increased. However, this improved Xc has negative effect on mechanical properties.


2013 ◽  
Vol 750-752 ◽  
pp. 38-42
Author(s):  
Wang Wang Yu ◽  
Juan Li ◽  
Yun Ping Cao

In this study, the silvergrass (SV) was used to reinforce HDPE composites. The effects of polymeric methylene diphenyl diisocyanate (PMDI) content, slivergrass fibers content on the mechanical, water absortion of wood plastic composites (WPCs) were investigated. It was found that the mechanical properties of the SV reinforced HDPE composites can be improved by PMDI treatment. The highest tensile strength and flexural strength of the composites can be reached with 50% SV contents at the SV: PMDI=6:1. It has been proved that the hydroxyl groups of SV fibers which can react with the-NCO by FTIR. It also can be concluded that the water absorption of PMDI treated WPCs was lower than untreated ones.


2013 ◽  
Vol 34 (1) ◽  
pp. 39-54 ◽  
Author(s):  
Ljerka Kratofil Krehula ◽  
Zvonimir Katančić ◽  
Anita Ptiček Siročić ◽  
Zlata Hrnjak-Murgić

Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 236
Author(s):  
Wanyu Liu ◽  
Yue Li ◽  
Shunmin Yi ◽  
Limin Wang ◽  
Haigang Wang ◽  
...  

To expand the use of wood plastic composites in the structural and engineering constructions applications, continuous aramid fiber (CAF) with nondestructive modification was incorporated as reinforcement material into wood-flour and high-density-polyethylene composites (WPC) by extrusion method with a special die. CAF was treated with dopamine (DPA), vinyl triethoxysilane (VTES), and DPA/VTES, respectively. The effects of these modifications on compatibility between CAF and WPCs and the properties of the resulting composites were explored. The results showed that compared with the original CAF, the adhesion strength of DPA and VTES combined modified CAF and WPCs increased by 143%. Meanwhile, compared with pure WPCs, CAF after modification increased the tensile strength, tensile modulus, and impact strength of the resulting composites by 198, 92, and 283%, respectively.


2019 ◽  
Vol 69 (4) ◽  
pp. 313-321
Author(s):  
Xiaoxia Hu ◽  
Zhenghao Chen ◽  
Yang Cao ◽  
Zhangjing Chen ◽  
Shuangbao Zhang ◽  
...  

Abstract The focus of this study was to observe the properties of bamboo plastic composites modified with a self-made modifier, 18 acyl-dopamine (0, 0.25, 0.50, 0.75, 1.00, and 1.25 weight percent [wt%] based on the dry weight of bamboo powder). The effects of the modifier were demonstrated by measures of mechanical properties, water absorption, thermal stability, and scanning electron microscopy (SEM). The results revealed that 18 acyl-dopamine could be used as an effective modifier of bamboo powder/high-density polyethylene composites. When the modifier was increased, the toughness of the composite deteriorated, and the strength and rigidity improved. This indicated that when the dosage became higher, the compatibilization became stronger, and the toughening effect became worse. Based on the experimental data, a small dosage modifier acted as a toughening agent; as the dosage increased to 1.0 wt%, the compatibility began to appear. The modifier reacted with the hydroxyl groups on the surface of the bamboo powder, which caused the bamboo powder to absorb less water, so the thickness expansion rate was lowest at 1.25 wt%. The pyrolysis peak of bamboo powder and plastic showed a tendency to be close to each other, indicating that the interface was improving. Based on the equation of Flynn-Wall-Ozawa, as the dosage of the modifier increased from 0.50 to 1.25 wt%, the apparent activation energy also increased. The SEM analysis showed the binding between bamboo powder and the plastic matrix was strongest when the modifier dosage was 1.25 wt%.


Sign in / Sign up

Export Citation Format

Share Document