Study on Dynamic Responses of Human-Structure Interaction System

2013 ◽  
Vol 438-439 ◽  
pp. 775-778
Author(s):  
Yi He Wang ◽  
Na Yang

t has previously been shown that human-structure dynamic system received much attention as a major topic in the serviceability performance and safety problems. In this study, the structure occupied by human are considered as a two degrees-of-freedom system. The dynamic characteristics of human-structure system are investigated by deriving the eigenvalue equation of the system. The response of structure to a person walking across it at various rates of walking is also researched. The results show that the pair natural frequencies of coupled system have a contrary trend when the crowd densities increase. It also demonstrates that the resonant situation occurs when structural fundamental frequency is equal to or an integer multiple of the pacing frequency.

Author(s):  
Dawei Zhang ◽  
Shengyang Zhu

This paper presents a nonlinear rubber spring model for the primary suspension of the railway vehicle, which can effectively describe the amplitude dependency and the frequency dependency of the rubber spring, by taking the elastic force, the fractional derivative viscous force, and nonlinear friction force into account. An improved two-dimensional vehicle–track coupled system is developed based on the nonlinear rubber spring model of the primary suspension. Nonlinear Hertz theory is used to couple the vehicle and track subsystems. The railway vehicle subsystem is regarded as a multibody system with ten degrees-of-freedom, and the track subsystem is treated as finite Euler–Bernoulli beams supported on a discrete–elastic foundation. Mechanical characteristic of the rubber spring due to harmonic excitations is analyzed to clarify the stiffness and damping dependencies on the excitation frequency and the displacement amplitude. Dynamic responses of the vehicle–track coupled dynamics system induced by the welded joint irregularity and random track irregularity have been performed to illustrate the difference between the Kelvin–Voigt model and the proposed model in the time and frequency domain.


Author(s):  
Jinzhu Xia ◽  
Quanming Miao ◽  
Nicholas Haritos ◽  
Beverley Ronalds

Offshore oil and gas can be produced using a variety of platform types. One option, the compliant offshore tower, has proven to be an economic solution in moderately deep water (300–600m). In this paper, the wave-induced global dynamic responses of a compliant tower in wind, current and waves are studied in the context of fluid-structure interaction. A beam undergoing transverse and axial motion models the vertical member of the tower. The beam is supported by a linear-elastic torsional spring at the bottom end and a point mass and a buoyant chamber is located at the top free end. The fluid forces on the beam are modeled using the Morison equation while the hydrodynamic forces on the chamber are obtained based on the three-dimensional diffraction-radiation theory. By applying Hamilton’s variation principle, the equations of motion are derived for the coupled fluid-structure interaction system. The non-linear coupled system equations that emanate from this new approach can then be solved numerically in the time domain.


Author(s):  
Youngin Choi ◽  
Seungho Lim ◽  
Kyoung-Su Park ◽  
No-Cheol Park ◽  
Young-Pil Park ◽  
...  

The System-integrated Modular Advanced ReacTor (SMART) developed by KAERI includes components like a core, steam generators, coolant pumps, and a pressurizer inside the reactor vessel. Though the integrated structure improves the safety of the reactor, it can be excited by an earthquake and pump pulsations. It is important to identify dynamic characteristics of the reactor internals considering fluid-structure interaction caused by inner coolant for preventing damage from the excitations. Thus, the finite element model is constructed to identify dynamic characteristics and natural frequencies and mode shapes are extracted from this finite element model.


2004 ◽  
Vol 11 (3-4) ◽  
pp. 505-519 ◽  
Author(s):  
Michele Di Sciuva ◽  
Cecilia Surace

This article describes studies into the flexural vibration of a cracked cantilevered beam in contact with a non-viscous fluid. The crack has been represented by a mass-less rotational spring, the flexibility of which has been calculated using linear fracture mechanics. The coupled system is subject to undisturbed boundary condition at infinity in the fluid domain. A range of different boundary conditions have been analysed such as both incompressible and compressible fluid, with and without sloshing. Various crack sizes and positions have been considered in order to assess the effect of damage in the fluid-structure interaction problem.


2011 ◽  
Vol 71-78 ◽  
pp. 1507-1510 ◽  
Author(s):  
Dong Wang ◽  
Shi Qiao Gao ◽  
Michael Kasperski ◽  
Hai Peng Liu ◽  
Lei Jin

The human body forms a complex dynamic system with more than one natural frequency and provides considerable damping capacities. Therefore, the coupled system of a structure and the occupants can hardly be described with its basic dynamic characteristics considering only the mass of the occupants. Depending on the natural frequency of the empty structure, the human body dominantly acts like a mass, a mass and a damper or a damper. If the natural frequency of the empty stand increases 3 Hz, the human body induces considerable damping into the coupled system. In the limit, the dynamic characteristics can be described based on the average values of the characteristics of the human body.


2017 ◽  
Vol 09 (02) ◽  
pp. 1750021 ◽  
Author(s):  
Huixuan Han ◽  
Ding Zhou ◽  
Tianjian Ji

In this paper, the dynamic interaction of human body and structure is studied The shaking table experiment with a person standing on a rigid table supported by springs is firstly carried out to determine the dynamic characteristics of the coupled system. It is shown that the body mainly contributes only one degree of freedom to the human-structure coupled system. Then, the two-degree-of-freedom (TDOF) coupled model of the human-structure system is developed through the energy variation by considering the standing human body as an elastic bar of two segments with distributed mass, stiffness and damping. Based on the experiment data, the dynamic parameters of the TDOF coupled system are determined by using the least square method (LSM). The mechanical parameters such as the damping ratio and the distributions of mass and stiffness of the human body model of two segments are identified by adopting the inversing technique Finally, the determined body model is applied to analyze the free vibration of beams and plates occupied by standing persons. The governing differential equations of the human-beam system and the human-plate system are, respectively, derived out. The dynamic characteristics of the human-structure interaction are obtained by the use of the complex mode theory. The results are compared with the experimental ones and those from the finite element simulations. Good agreement is observed for all cases.


Author(s):  
Jing T. Xing

A fluid-structure interaction system subject to a Sommerfeld condition is defined as a Sommerfeld system in this paper. It is well known that the natural vibration of a dynamic system is defined by the eigenvalue problem of the corresponding idealized system with no material damping assumed and external forces. From the defined eigenvalue problem, the real natural frequencies and the corresponding natural modes of the system can be derived. What are the characteristics of natural vibrations of a Sommerfeld system? This paper intends to address this problem by investigating three selected fluid-structure interaction systems. The systems chosen involve the solid structures with one, two and infinite degrees of freedom coupling to an infinite fluid domain subject to a Sommerfeld condition, respectively. The governing equations describing these coupled systems are presented using the theory of continuum mechanics. The theoretical solution for each problem is derived and discussed. The analysis demonstrates that a Sommerfeld system undergoing a natural vibration behaves energy dissipative characteristics although there is no material damping in solid and fluid of the system. The natural vibrations of a Sommerfeld system are governed by a complex eigenvalue problem which has only pairs of complex conjugate natural frequencies. The number of the complex conjugate natural frequencies and corresponding natural modes of this Sommerfeld system equals to the number of the degrees of freedom of the dry solid structure in the system and it is independent of the infinite fluid domain. The natural vibration forms of the solid structure in natural vibrations do not satisfy the orthogonal relationship. The findings in this research reveal some common dynamic characteristics of Sommerfeld systems. An approach for the dynamic response analysis of a Sommerfeld system is proposed based on the orthogonal natural modes of the dry structure in the system which is more efficient for engineering analysis.


Author(s):  
Shunji Kataoka ◽  
Satsuki Minami ◽  
Hiroshi Kawai ◽  
Shinobu Yoshimura

Dynamic responses considering fluid structure interaction (FSI) is important in many engineering fields and some of the FSI phenomena are treated as an acoustic fluid and structure interaction (AFSI) problem. The dynamic interactions between the fluid and structure can change dynamic characteristics of structures and their responses to external excitation such as seismic loading. The authors have developed a coupled simulation system for the large scale AFSI problems using an iterative partitioned coupling technique. In the system, the authors employed ADVENTURE system which adopted an efficient preconditioned iterative linear algebraic solver, and ADVENTURE Coupler is used to handle interface variable efficiently on various parallel computational environments. The authors employ Broyden method for updating interface accelerations to obtain the robust and fast convergence property of fixed point iterations. This paper presents the overview of the coupled analysis system and the results of its application to several AFSI problems are shown. The system runs efficiently in a parallel environment and it is capable for analyses of complex shaped three dimensional structures with more than 20 million degrees of freedom model.


1965 ◽  
Vol 32 (2) ◽  
pp. 373-377 ◽  
Author(s):  
C. S. Hsu

A dynamic system having multiple degrees of freedom and being under parametric excitation has been studied in an earlier paper [2]. However, the analysis given there necessitates certain restrictions on the distribution of the natural frequencies of the system. In this paper those restrictions are removed. The analysis presented here shows how to obtain a constant matrix whose eigenvalues determine the stability or instability of a system of ordinary differential equations with periodic coefficients at a given excitation frequency. The constant matrix is expressed entirely in terms of the given system parameters and the excitation frequency.


2009 ◽  
Vol 19 (01) ◽  
pp. 225-243 ◽  
Author(s):  
D. X. CAO ◽  
W. ZHANG

The nonlinear dynamic responses of a string-beam coupled system subjected to harmonic external and parametric excitations are studied in this work in the case of 1:2 internal resonance between the modes of the beam and string. First, the nonlinear governing equations of motion for the string-beam coupled system are established. Then, the Galerkin's method is used to simplify the nonlinear governing equations to a set of ordinary differential equations with four-degrees-of-freedom. Utilizing the method of multiple scales, the eight-dimensional averaged equation is obtained. The case of 1:2 internal resonance between the modes of the beam and string — principal parametric resonance-1/2 subharmonic resonance for the beam and primary resonance for the string — is considered. Finally, nonlinear dynamic characteristics of the string-beam coupled system are studied through a numerical method based on the averaged equation. The phase portrait, Poincare map and power spectrum are plotted to demonstrate that the periodic and chaotic motions exist in the string-beam coupled system under certain conditions.


Sign in / Sign up

Export Citation Format

Share Document