Trajectory Generation of Spray Painting Robot Using Point Cloud Slicing

2010 ◽  
Vol 44-47 ◽  
pp. 1290-1294 ◽  
Author(s):  
Ming Zhu Li ◽  
Zhang Ping Lu ◽  
Chun Fa Sha ◽  
Li Qing Huang

In the trajectory planning process of spray painting robot, an approach to automatic trajectory generation of spray gun using point cloud slicing is presented. Firstly, the point cloud data is obtained by scanning the surface of the workpiece. After the uniform slicing of point cloud model, the spraying position is determined by the average sampling of cross-section contours. Then the normal vectors of the sampling points are estimated. Finally the trajectory of spray gun is generated by offsetting the sampling points along their normal vectors. Experimental results show that the method has good feasibility and effectiveness. The spraying trajectory, direction and distance of spray gun can be controlled accurately, thus the spraying quality and efficiency are improved.

Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 908 ◽  
Author(s):  
Wei Chen ◽  
Xu Li ◽  
Huilin Ge ◽  
Lei Wang ◽  
Yuhang Zhang

In this paper, aiming at the problem of poor quality and low spraying efficiency of irregular for complex freeform surfaces, a new spray painting robot trajectory planning method based on point cloud slicing technology is proposed. Firstly, the point cloud data of the workpiece to be sprayed is obtained by laser scanning. The point cloud data is processed to obtain the point cloud model of the sprayed workpiece. Then the section polysemy line is obtained after slice acquisition and section data processing of the point cloud model. The section polysemy line is sampled on average, and the normal vector of all sampling points is estimated. Finally, interpolation algorithm is used to connect the data points to obtain the space trajectory of spraying robot. In addition, the droplet trajectory model for electrostatic spray painting is established. The experimental results show that the method fully meets the requirements of coating thickness and improves the spraying efficiency and uniformity of coating.


Robotica ◽  
2021 ◽  
pp. 1-22
Author(s):  
Xinyi Yu ◽  
Zhaoying Cheng ◽  
Yikai Zhang ◽  
Linlin Ou

Abstract To improve the uniformity of coating thickness and spraying efficiency, new point cloud modeling and slicing algorithm are proposed to deal with free-form surfaces for the spray painting robot in this paper. In the process of point cloud modeling, the edge preservation algorithm is firstly presented to avoid damaging the edge characteristic of the point cloud model. For the spraying gun, the coating deposition model on the free-form surface is determined on the basis of the elliptic double $\beta $ distribution model. Then, the grid projection algorithm is proposed to obtain grid points between adjacent slices on the free-form surface. Based on this, the analytical solution for calculating the coating thickness at each grid point is obtained. The cross-section contour points are obtained by intercepting the point cloud model with several parallel slices, which is important for the trajectory planning of the spray painting robot. Finally, the uniformity of coating thickness is optimized in terms of the moving speed of the spraying gun and the slice thickness. The simulation and numerical experiment results show that the uniformity of coating thickness and spraying efficiency are improved using the proposed point cloud modeling and slicing algorithm.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5373 ◽  
Author(s):  
Jingxin Su ◽  
Ryuji Miyazaki ◽  
Toru Tamaki ◽  
Kazufumi Kaneda

As mobile mapping systems become a mature technology, there are many applications for the process of the measured data. One interesting application is the use of driving simulators that can be used to analyze the data of tire vibration or vehicle simulations. In previous research, we presented our proposed method that can create a precise three-dimensional point cloud model of road surface regions and trajectory points. Our data sets were obtained by a vehicle-mounted mobile mapping system (MMS). The collected data were converted into point cloud data and color images. In this paper, we utilize the previous results as input data and present a solution that can generate an elevation grid for building an OpenCRG model. The OpenCRG project was originally developed to describe road surface elevation data, and also defined an open file format. As it can be difficult to generate a regular grid from point cloud directly, the road surface is first divided into straight lines, circular arcs, and and clothoids. Secondly, a non-regular grid which contains the elevation of road surface points is created for each road surface segment. Then, a regular grid is generated by accurately interpolating the elevation values from the non-regular grid. Finally, the curved regular grid (CRG) model files are created based on the above procedures, and can be visualized by OpenCRG tools. The experimental results on real-world data show that the proposed approach provided a very-high-resolution road surface elevation model.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Acheng Zhou ◽  
Chao Gao

Currently, there is less research on how to improve the efficiency of the application of computer graphics technology in the creation of public sculpture. Therefore, this paper will focus on how computer graphics algorithms can enable systems for the creation of public sculpture with the intervention of computer graphics technology to create more accurate and completed works of public sculpture. It will explore and analyze how computer image algorithms can help creators apply computer image technology to finish complete and accurate public sculptures, and individual studies, computer imagery, and model analysis are also used. In systems for the creation of public sculpture, the point cloud data of the model is obtained through 3D laser scanning technology; then the algorithm of the point cloud model is integrated and the Statistical Outlier Removal algorithm of the point cloud model intervention is processed. By this way, the point cloud model of the work is optimized, and then a more completed and accurate public sculpture work can be produced by 3D sculpting or 3D printing. The research shows that, in the creation of public sculptures with the intervention of computer graphics technology, the computer graphics algorithm acquires the basis of the high-definition public sculpture data model. The computer graphics algorithm improves the accuracy and completeness of the creator using computer graphics technology; it is also the key to transform the accurate enlargement and transformation of the sculptural model into the actual sculptural work.


Author(s):  
Liwen Guan ◽  
Lu Chen

Purpose This paper aims to present a new trajectory optimization approach targeting spray painting applications that satisfies the paint thickness requirements of complex-free surfaces. Design/methodology/approach In this paper, a new trajectory generation approach is developed to optimize the transitional segments at the junction of adjacent patches for straight line, convex arc and concave arc combinations based on different angles between normal vectors of patches. In addition, the paint parameters including the paint gun velocity, spray height and the distance between adjacent trajectories have been determined in the generation approach. Then a thickness distribution model is established to simulate the effectiveness of trajectory planning. Findings The developed approach was applied to a complex-free surface of various curvatures, and the analysis results of the trajectory optimization show that adopting different transitional segment according to the angle between normal vectors can obtain the optimal trajectory. Based on the simulation and experimental validation results, the proposed approach is effective at improving paint thickness uniformity, and the obtained results are consistent with the simulation results, meaning that the simulation model can be used to predict the actual paint performance. Originality/value This paper discusses a new trajectory generation approach to decrease the thickness error values to satisfy spray paint requirements. According to the successfully performed simulation and experimental results, the approach is useful and practical in overcoming the challenge of improving the paint thickness quality on complex-free surface.


2012 ◽  
Vol 157-158 ◽  
pp. 558-562 ◽  
Author(s):  
Zhan Zhong Wang ◽  
Chao Ying Liu ◽  
Lin Zhang Cheng ◽  
Xiao Ke Fan

As an advanced painting equipment, the spray-painting robot has been widely used in product painting. For the shape complexity of modern product, how to make the coating uniform has become an extremely important problem. In this paper, based on Z-map theory and the free surface’s CAD model, the free surface is fragmented into polyhedron model, and then the coordinate information and normal vectors of the painting node under the condition of equidistance painting are exacted with MATLAB program. At the end, with those coordinate information & normal vectors, the spray gun path for a random free surface could be generated and simulated automatically. Finally, based on the 3D model setup with Pro/E software, the spray gun path for a car body’s top area is generated and simulated.


Author(s):  
Z. Majid ◽  
C. L. Lau ◽  
A. R. Yusoff

This paper describes the use of terrestrial laser scanning for the full three-dimensional (3D) recording of historical monument, known as the Bastion Middleburg. The monument is located in Melaka, Malaysia, and was built by the Dutch in 1660. This monument serves as a major hub for the community when conducting commercial activities in estuaries Malacca and the Dutch build this monument as a control tower or fortress. The monument is located on the banks of the Malacca River was built between Stadhuys or better known as the Red House and Mill Quayside. The breakthrough fort on 25 November 2006 was a result of the National Heritage Department through in-depth research on the old map. The recording process begins with the placement of measuring targets at strategic locations around the monument. Spherical target was used in the point cloud data registration. The scanning process is carried out using a laser scanning system known as a terrestrial scanner Leica C10. This monument was scanned at seven scanning stations located surrounding the monument with medium scanning resolution mode. Images of the monument have also been captured using a digital camera that is setup in the scanner. For the purposes of proper registration process, the entire spherical target was scanned separately using a high scanning resolution mode. The point cloud data was pre-processed using Leica Cyclone software. The pre-processing process starting with the registration of seven scan data set through overlapping spherical targets. The post-process involved in the generation of coloured point cloud model of the monument using third-party software. The orthophoto of the monument was also produced. This research shows that the method of laser scanning provides an excellent solution for recording historical monuments with true scale of and texture.


Sign in / Sign up

Export Citation Format

Share Document