Investigation on the Turbulence Models Effect of a Coal Classifier by Using Computational Fluids Dynamics

2013 ◽  
Vol 465-466 ◽  
pp. 617-621
Author(s):  
Norasikin Mat Isa ◽  
Ahmad Norman Khalis Ahmad Fara ◽  
Nor Zelawati Asmuin

This study evaluates five turbulence models to determine the best models to be implemented as it representing the turbulent flow inside the lab scale classifier. The models studied are: The standard ƙ-ɛ model, Renormalization-group (RNG) ƙ-ɛ model, Realizable ƙ-ɛ model, Standard k-ω model, and Reynolds stress model (RSM). Through analysis of air flow, the air velocity data can be obtained from computational fluid dynamics (CFD), the result shows that, standard ƙ-ɛ model and Realizable ƙ-ɛ model are found to be more appropriate to use than the other turbulence models. The model validation is conducted by comparing the simulated velocities with experimental data in a lab scale classifier from literature. ANSYS software is selected to be used to run the simulation and analysis.

Author(s):  
Marco Colombo ◽  
Antonio Cammi ◽  
Marco E. Ricotti

This paper deals with a comprehensive study of fully developed single-phase turbulent flow and pressure drops in helically coiled channels. To the aim, experimental pressure drops were measured in an experimental campaign conducted at SIET labs, in Piacenza, Italy, in a test facility simulating the Steam Generator (SG) of a Generation III+ integral reactor. Very good agreement is found between data and some of the most common correlations available in literature. Also more data available in literature are considered for comparison. Experimental results are used to assess the results of Computational Fluid Dynamics (CFD) simulations. By means of the commercial CFD package FLUENT, different turbulence models are tested, in particular the Standard, RNG and realizable k-ε models, Shear Stress Transport (SST) k-ω model and second order Reynolds Stress Model (RSM). Moreover, particular attention is placed on the different types of wall functions utilized through the simulations, since they seem to have a great influence on the calculated results. The results aim to be a contribution to the assessment of the capability of turbulence models to simulate fully developed turbulent flow and pressure drops in helical geometry.


2017 ◽  
Vol 64 (3) ◽  
pp. 401-418 ◽  
Author(s):  
Mateusz Jędrzejewski ◽  
Marta Poćwierz ◽  
Katarzyna Zielonko-Jung

Abstract In the paper, the authors discuss the construction of a model of an exemplary urban layout. Numerical simulation has been performed by means of a commercial software Fluent using two different turbulence models: the popular k-ε realizable one, and the Reynolds Stress Model (RSM), which is still being developed. The former is a 2-equations model, while the latter – is a RSM model – that consists of 7 equations. The studies have shown that, in this specific case, a more complex model of turbulence is not necessary. The results obtained with this model are not more accurate than the ones obtained using the RKE model. The model, scale 1:400, was tested in a wind tunnel. The pressure measurement near buildings, oil visualization and scour technique were undertaken and described accordingly. Measurements gave the quantitative and qualitative information describing the nature of the flow. Finally, the data were compared with the results of the experiments performed. The pressure coefficients resulting from the experiment were compared with the coefficients obtained from the numerical simulation. At the same time velocity maps and streamlines obtained from the calculations were combined with the results of the oil visualisation and scour technique.


2020 ◽  
pp. 46-53
Author(s):  
Jakub Mularski ◽  
Amit Arora ◽  
Muhammad Azam Saeed ◽  
Łukasz Niedźwiecki ◽  
Samrand Saeidi

The paper regards the impact of four different turbulence models on the air flow pattern in a confined rectangular space. The following approaches are analyzed. The Baseline (BSL) Reynolds model, the Speziale-Sarkar-Gatzki (SSG) Reynolds model, the Menter's shear-stress transport (SST) model and the basic k-ε model. Computational fluid dynamics (CFD) results are compared with the experimental measurements in four different planes. The Reynolds number for the given conditions is equal to 5000. The k-ε model yielded the most accurate results with regard to the experimental data but its reliability decreased near the wall region. With respect to the other models, it was also found that the k-ε approach generated the least circulating flow.


2001 ◽  
Vol 124 (1) ◽  
pp. 86-99 ◽  
Author(s):  
G. A. Gerolymos ◽  
J. Neubauer ◽  
V. C. Sharma ◽  
I. Vallet

In this paper an assessment of the improvement in the prediction of complex turbomachinery flows using a new near-wall Reynolds-stress model is attempted. The turbulence closure used is a near-wall low-turbulence-Reynolds-number Reynolds-stress model, that is independent of the distance-from-the-wall and of the normal-to-the-wall direction. The model takes into account the Coriolis redistribution effect on the Reynolds-stresses. The five mean flow equations and the seven turbulence model equations are solved using an implicit coupled OΔx3 upwind-biased solver. Results are compared with experimental data for three turbomachinery configurations: the NTUA high subsonic annular cascade, the NASA_37 rotor, and the RWTH 1 1/2 stage turbine. A detailed analysis of the flowfield is given. It is seen that the new model that takes into account the Reynolds-stress anisotropy substantially improves the agreement with experimental data, particularily for flows with large separation, while being only 30 percent more expensive than the k−ε model (thanks to an efficient implicit implementation). It is believed that further work on advanced turbulence models will substantially enhance the predictive capability of complex turbulent flows in turbomachinery.


ROTASI ◽  
2017 ◽  
Vol 19 (1) ◽  
pp. 1
Author(s):  
Eflita Yohana ◽  
Bambang Yunianto ◽  
Ade Eva Diana

Dehumidifikasi merupakan proses pengurangan kadar uap air  yang berpengaruh terhadap besar nilai kelembaban relatif dan temperatur suatu ruangan. Dalam mengkondisikan kadar uap air dalam suatu ruangan tersebut agar dapat sesuai dengan kebutuhan, maka perlu diketahui distribusi kelembaban relatif dan temperatur dalam ruangan menggunakan Computational Fluid Dynamics (CFD). Pada penelitian ini, pengambilan data dilakukan selama 20 menit dan dilakukan pada pukul 08.00 WIB.  Liquid desiccant yang digunakan dijaga pada temperatur 10°C dengan variasi konsentrasi 40% dan 50%. Sensor DHT 11 dipasang pada lima sisi, atap, dinding, lantai, inlet, outlet, yang berfungsi untuk mencatat perubahan kelembaban dan temperatur selama pengujian berlangsung. Pada kondisi normal tanpa menyalakan alat dehumidifier, sensor mencatat temperatur rata-rata di dalam ruangan sebesar 29,9°C dan RH 58,9%. Simulasi dilakukan menggunakan software CFD Solidworks Flow Simulation 2014. Validasi hasil eksperimen dengan hasil simulasi dengan membandingan bahwa liquid desiccant 40% dan 50%, nozzle sprayer 0.2 mm dengan temperatur yang dijaga pada 10°C mempunyai distribusi yang cukup merata dengan konsentrasi 40% memiliki nilai RH terendah sebesar 65,21%, nilai RH tertinggi sebesar 68,99%, nilai ω = 18 gr/kg, serta mempunyai temperatur tertinggi 31,11°C dan temperatur terendah 30,05°C. Sedangkan dengan konsentrasi 50% distribusi dalam ruangan juga cukup merata karena memiliki nilai RH terendah sebesar 59,21%., nilai RH tertinggi sebesar 62,80%, nilai ω = 17 gr/kg, serta mempunyai temperatur tertinggi 31,71°C dan temperatur terendah 30,93°C. Sehingga liquid desiccant dengan konsentrasi 50% mempunyai nilai Humidity Ratio (ω) lebih rendah dibandingkan dengan yang memiliki konsentrasi 40%.


Author(s):  
G. A. Gerolymos ◽  
I. Vallet

The purpose of this paper is to present a numerical methodology for the computation of complex 3-D turbomachinery flows using advanced multiequation turbulence closures, including full 7-equation Reynolds-stress transport models. A general frame-work describing the turbulence models and possible future improvements is presented. The flow equations are discretized on structured multiblock grids, using an upwind biased (O[Δx3] MUSCL reconstruction) finite-volume scheme. Time-integration uses a local-dual-time-stepping implicit procedure, with internal subiterations. Computational efficiency is achieved by a specific approximate factorization of the implicit subiterations, designed to minimize the computational cost of the turbulence-transport-equations. Convergence is still accelerated using a mean-flow-multigrid full-approximation-scheme method, where multigrid is applied on the mean-flow-variables only. Speed-ups of a factor 3 are obtained using 3 levels of multigrid (fine + 2 coarser grids). Computational examples are presented using several Reynolds-stress model variants (and also a baseline k–ε model), for various turbomachinery configurations, and compared with available experimental measurements.


Author(s):  
K. Podila ◽  
J. Bailey ◽  
Y. F. Rao ◽  
M. Krause

Atomic Energy of Canada Limited (AECL) has initiated a program to develop Computational Fluid Dynamics (CFD) capability for simulating single- and two-phase flows in rod-bundles. In the current work, a 5×5 rod assembly with a split-type spacer grid is simulated with ANSYS Fluent 14 using unsteady simulations with a fully conformal hybrid mesh (wall y+∼30). This work represents results of AECL’s recent participation in the OECD/NEA organized CFD benchmarking exercise on the MATiS-H experiment performed at the Korean Atomic Energy Research Institute (KAERI). The sensitivity to turbulence models is tested using the standard k-ε and the Reynolds stress model (RSM). Reasonable agreement is achieved between the calculated and experimental velocity values in the region close to the spacer grid, whereas turbulence intensity values are underpredicted compared to the experiments.


Author(s):  
Emmanuel Guilmineau

Computational Fluid Dynamics (CFD) is used to simulate the flow over a pickup truck. The flow solver used is ISIS-CFD developed by the CFD Department of the Fluid Mechanics Laboratory of Ecole Centrale de Nantes. CFD simulations are carried out with the Explicit Algebraic Reynolds Stress Model (EARSM) turbulence model and the Detached Eddy Simulation (DES). The focus of the simulation is to assess the capabilities of ISIS-CFD for vehicle aerodynamic development for pickup trucks. Detailed comparisons are made between the CFD simulations and the existing experiments for a generic pickup truck. The comparisons between the simulation results and the time-averaged measurements reveals that the CFD calculations are able to track the flow trends.


Author(s):  
Anton Weber ◽  
Christian Morsbach ◽  
Edmund Kügeler ◽  
Christoph Rube ◽  
Matthias Wedeking

The flow field inside a single-stage centrifugal compressor characterized by a high flowrate of Φ = 0.15 and a design total pressure ratio of approximately 1.4 is analysed numerically. The stage geometry consists of a radially oriented inlet duct with uniform inflow without swirl, a 90 deg inlet bend in front of the impeller, the shrouded impeller itself followed by a large radial vaneless diffuser, a 180 deg U-turn, a radially oriented turning vane, a subsequent 90 deg bend, and as the last item a long axial exit duct. The impeller blades have large fillets at hub and tip and thick blunt trailing edges. Due to the rotating shroud, a labyrinth seal is placed above the impeller with 5 seal tips. The complete leakage region is also included in the CFD analysis. The blade numbers for the impeller and vane are 15 and 14, respectively. The test rig has recently been built at the Institute of Propulsion and Turbomachinery at RWTH Aachen University (Germany). The first part of the CFD work presented was carried out before the first experimental data were available. Using the k-ω turbulence model of Wilcox (1988), a number of principal steady RANS calculations were performed to investigate the following: Impact of near wall grid resolution and turbulence model wall boundary condition treatment, impact of impeller fillets, and the influence of leakage flow. This part is completed by a comparison of steady RANS simulations with the time-mean results of unsteady RANS analyses of one blade passage. For the calculations presented in the second part, experimental data are available at the inflow and outflow planes. At these planes overall mean values were deduced. Additionally, 3- and 5-hole probe data are available at spanwise traverse planes located at the zenith of the U-turn and in the exit plane. For part two a finer grid with y+ values of approximately unity for all solid walls was used. In addition to the Wilcox k-ω model and the Menter SST k-ω model, two higher level turbulence models — the explicit algebraic Reynolds stress model Hellsten EARSM k-ω and the differential Reynolds stress model SSG/LRR-ω — have been tested and compared with the experiments. The agreement in terms of overall performance (total pressure ratio, isentropic efficiency) is satisfactory for all turbulence models used, but there are some differences: the k-ω model is shown to be the most stable one towards stall. On the other hand, it is shown that details of the flow field in terms of the two spanwise traverses can be better represented by the more advanced turbulence models. All CFD simulations have been performed at 100% shaft speed.


Author(s):  
Stefan Voigt ◽  
Berthold Noll ◽  
Manfred Aigner

The present paper deals with the detailed numerical simulation of film cooling including conjugate heat transfer. Five different turbulence models are used to simulate a film cooling configuration. The models include three steady and two unsteady models. The steady RANS models are the Shear stress transport (SST) model of Menter, the Reynolds stress model of Speziale, Sarkar and Gatski and a k-ε explicit algebraic Reynolds stress model. The unsteady models are a URANS formulation of the SST model and a scale-adaptive simulation (SAS). The solver used in this study is the commercial code ANSYS CFX 11.0. The results are compared to available experimental data. These data include velocity and turbulence intensity fields in several planes. It is shown that the steady RANS approach has difficulties with predicting the flow field due to the high 3-dimensional unsteadiness. The URANS and SAS simulations on the other hand show good agreement with the experimental data. The deviation from the experimental data in velocity values in the steady cases is about 20% whereas the error in the unsteady cases is below 10%.


Sign in / Sign up

Export Citation Format

Share Document