A Study on the Effect of Driver Model Parameters on the Performance of Driver-Vehicle-Road Closed-Loop System

2013 ◽  
Vol 470 ◽  
pp. 604-608
Author(s):  
Li Zeng Zhang ◽  
Hsin Guan ◽  
Xin Jia ◽  
Ping Ping Lu ◽  
Yong Shang Chen

The concept of DODF and other two evaluation indices based on DODF were proposed. Based on the optimal preview acceleration driver model, the effect of driver model parameters on the performance of driver-vehicle-road closed-loop system was studied by the closed-loop system simulation. The results show that the preview time of a driver who has good driving habits should be always larger than a certain valueTP0, the increase of both nerve delay timetdand muscle lag timeThlead to the increase ofTP0, andtdhas more effect onTP0thanThdoes. The increase of bothtdandThlead to the decrease of DODF, andtdhas more effect on DODF thanThdoes. Furthermore, the increase of bothtdandThalso lead to the increase of both tracking indexJEMand driving load indexTCM,tdhas more effect onJEMthanThdoes, andThhas more effect onTCMthantddoes.

2005 ◽  
Vol 38 (1) ◽  
pp. 440-445
Author(s):  
Faming Li ◽  
Robert E. Skelton

Author(s):  
Randa Herzallah

In this paper a new framework has been applied to the design of controllers which encompasses nonlinearity, hysteresis and arbitrary density functions of forward models and inverse controllers. Using mixture density networks, the probabilistic models of both the forward and inverse dynamics are estimated such that they are dependent on the state and the control input. The optimal control strategy is then derived which minimizes uncertainty of the closed loop system. In the absence of reliable plant models, the proposed control algorithm incorporates uncertainties in model parameters, observations, and latent processes. The local stability of the closed loop system has been established. The efficacy of the control algorithm is demonstrated on two nonlinear stochastic control examples with additive and multiplicative noise.


2021 ◽  
Author(s):  
Klaske Van Heusden ◽  
Greg Stewart ◽  
Sarah Otto ◽  
Guy Dumont

The COVID-19 pandemic has had an enormous toll on human health and well-being and led to major social and economic disruptions. Public health interventions in response to burgeoning case numbers and hospitalizations have repeatedly bent down the epidemic curve in many jurisdictions, effectively creating a closed-loop dynamic system. We aim to formalize and illustrate how to incorporate principles of feedback control into pandemic projections and decision making. Starting with a SEEIQR epidemiological model, we illustrate how feedback control can be incorporated into pandemic management using a simple design (proportional-integral or PI control), which couples recent changes in case numbers or hospital occupancy with explicit policy restrictions. We then analyse a closed-loop system between the SEEIQR model and the designed feedback controller to illustrate the potential benefits of pandemic policy design that incorporates feedback. We first explored a feedback design that responded to hospital measured infections, demonstrating robust ability to control a pandemic despite simulating large uncertainty in reproduction number R0 (range: 1.04-5.18) and average time to hospital admission (range: 4-28 days). The second design compared responding to hospital occupancy to responding to case counts, showing that shorter delays reduced both the cumulative case count and the average level of interventions. Finally, we show that feedback is robust to changing public compliance to public health directives, and to systemic changes associated with new variants of concern and with the introduction of a vaccination program. The negative impact of a pandemic on human health and societal disruption can be reduced by coupling models of disease propagation with models of the decision-making process. This creates a closed-loop system that better represents the coupled dynamics of a disease and public health responses. Importantly, we show that feedback control is robust to delays in both measurements and responses, and to uncertainty in model parameters and the efficacy of control measures.


2011 ◽  
Vol 299-300 ◽  
pp. 1256-1261
Author(s):  
Hui He ◽  
Kun Zhang ◽  
Peng Wang

In this paper, a cybernetic model of “driver-vehicle-road” closed-loop system including a driver model and a steering system model is built under the MATLAB/Simulink environment. Then, the influence of different dynamic characteristics of steering system on vehicle handling and stability is studied. The results suggest that the “driver-vehicle” model built has a high tracking precision in following the path; Increasing the rigidity of steering system or decreasing the dilatory distance of front tire can enhance the tracking precision and can minish the driving burden and the fatalness of side-tip, the total evaluation result of vehicle performance will be optimized as well.


Author(s):  
Ju Xie ◽  
Xing Xu ◽  
Feng Wang ◽  
Long Chen

In order to improve the adaptability and tracking performance of intelligent vehicles under complex driving conditions, and simulate the manipulation characteristics of the real driver in the driver–vehicle–road closed-loop system, a kind of adaptive preview time model for intelligent vehicle driver model is proposed. This article builds the intelligent vehicle driver model based on optimal preview control theory and the basic preview time is identified to minimize path error under various conditions based on particle swarm optimization. Then, the ideal compensation preview time is constructed in various conditions and the appropriate factors affecting compensation preview time are filtered out according to correlation analysis. Moreover, the architecture and training procedure of deep network is specified for compensation preview time prediction. Finally, the adaptive preview time is modeled by combining the basic preview time with the compensation preview time and the validity of adaptive preview time model is verified by the driver–vehicle–road closed-loop system under normal and aggressive driving conditions. The results show that the proposed adaptive preview time model can help intelligent vehicles better adapt complex driving conditions and effectively improve the path-following performance.


1995 ◽  
Vol 115 (7) ◽  
pp. 887-892 ◽  
Author(s):  
Kunihiko Oura ◽  
Izumi Hanazaki ◽  
Kageo Akizuki

SIMULATION ◽  
1969 ◽  
Vol 12 (3) ◽  
pp. 145-151 ◽  
Author(s):  
Myron Glickman

Control system analysts are frequently called upon to include a hydraulic servo actuator as part of the loop in a complex closed-loop system simulation. This article presents a general description of several common types of hydraulic servo actuators and several methods for inclusion of the effects of load on the simulation of the actuator in the control loop. These methods are pre sented in block diagram form and are suitable for inclu sion in a larger simulation loop. The block diagrams themselves may be somewhat condensed and modified before inclusion in a larger simulation, but are presented here with all the details shown explicitly for clarity.


2012 ◽  
Vol 466-467 ◽  
pp. 1353-1357 ◽  
Author(s):  
Wei Lun Chen ◽  
Gong Cai Xin

The paper proposes a method to design AANN dynamic inversion controller through online ANN compensating inversion error. It mainly aims at evident shortage of dynamic inversion controller of UAV. A single hidden layer ANN structure is constructed and the stability of the whole closed loop system is proved. Also the stable adjustment arithmetic of online ANN weight is proposed. The robustness, the adaptability to fault and the response capability to actuator delay time of the scheme are verified by simulation. It is also proved that the online ANN has improved the performance of dynamic inversion controller well. It has important reference value for designing advanced flight control systems of UAV.


2013 ◽  
Vol 703 ◽  
pp. 264-268 ◽  
Author(s):  
Feng Du ◽  
Zhi Wei Guan ◽  
Guang Hui Yan

For improving the vehicle handling at high speed, an optimal controller was introduced for the four-wheel-active-steering vehicle. A closed-loop system was set up by combining vehicle model with driver model. The simulation test in the closed-loop system was carried out to verify control effect of such a optimum controller. Simulation results show that the four-wheel-active-steering vehicle under the optimal control can gain expected control effect such as wiping out sideslip angle and tracking desired yaw rate and so on. In addition, the four-wheel-active-steering vehicle with the optimal control can also track desired trajectory and its following accuracy is better than the traditional front-wheel steering vehicle. So, the steering response characteristic for the four-wheel-active-steering vehicle at high speed is improved.


Sign in / Sign up

Export Citation Format

Share Document