Image Interpolation Based on Wavelet Transform

2014 ◽  
Vol 484-485 ◽  
pp. 853-855
Author(s):  
Hai Zhu Yu ◽  
Xiao Li Chai ◽  
Hua Deng

Image interpolation is widely studied and used in digital image processing. In this paper, a method of image magnification according to the properties of fractal interpolation and wavelet transformation are presented. We focus the development of edge forming methods to be applied as a post process of standard image zooming methods for grayscale images, with the hope of retaining edges. Experiments make sure it valid.

2002 ◽  
Author(s):  
J. Fang ◽  
Chun-Yang Xiong ◽  
Hongju Li ◽  
M. Li ◽  
J. Zhang

Author(s):  
Arvind Kumar Kourav ◽  
Shilpi Sharma ◽  
Vimal Tiwari

Digital image processing has an enormous impact on technical and industrial applications. Uncompressed images need large storage capacity and communication bandwidth. Digital images have become a significant source of information in the current world of communication systems. This chapter explores the phenomenon of digital images and basic techniques of digital image processing in detail. With the creation of multimedia, the requirements for the storage of a larger amount of high quality pictures and data analysis are increasing.


Author(s):  
R. C. Gonzalez

Interest in digital image processing techniques dates back to the early 1920's, when digitized pictures of world news events were first transmitted by submarine cable between New York and London. Applications of digital image processing concepts, however, did not become widespread until the middle 1960's, when third-generation digital computers began to offer the speed and storage capabilities required for practical implementation of image processing algorithms. Since then, this area has experienced vigorous growth, having been a subject of interdisciplinary research in fields ranging from engineering and computer science to biology, chemistry, and medicine.


Author(s):  
L. Montoto ◽  
M. Montoto ◽  
A. Bel-Lan

INTRODUCTION.- The physical properties of rock masses are greatly influenced by their internal discontinuities, like pores and fissures. So, these need to be measured as a basis for interpretation. To avoid the basic difficulties of measurement under optical microscopy and analogic image systems, the authors use S.E.M. and multiband digital image processing. In S.E.M., analog signal processing has been used to further image enhancement (1), but automatic information extraction can be achieved by simple digital processing of S.E.M. images (2). The use of multiband image would overcome difficulties such as artifacts introduced by the relative positions of sample and detector or the typicals encountered in optical microscopy.DIGITAL IMAGE PROCESSING.- The studied rock specimens were in the form of flat deformation-free surfaces observed under a Phillips SEM model 500. The SEM detector output signal was recorded in picture form in b&w negatives and digitized using a Perkin Elmer 1010 MP flat microdensitometer.


Author(s):  
J. Hefter

Semiconductor-metal composites, formed by the eutectic solidification of silicon and a metal silicide have been under investigation for some time for a number of electronic device applications. This composite system is comprised of a silicon matrix containing extended metal-silicide rod-shaped structures aligned in parallel throughout the material. The average diameter of such a rod in a typical system is about 1 μm. Thus, characterization of the rod morphology by electron microscope methods is necessitated.The types of morphometric information that may be obtained from such microscopic studies coupled with image processing are (i) the area fraction of rods in the matrix, (ii) the average rod diameter, (iii) an average circularity (roundness), and (iv) the number density (Nd;rods/cm2). To acquire electron images of these materials, a digital image processing system (Tracor Northern 5500/5600) attached to a JEOL JXA-840 analytical SEM has been used.


Sign in / Sign up

Export Citation Format

Share Document