Design of Vibration Isolation Device for Ship Power Equipment and Investigation on its Dynamic Properties

2014 ◽  
Vol 496-500 ◽  
pp. 1129-1133
Author(s):  
Yuan Yuan Fang ◽  
Guo Hong Zhang ◽  
Ya Fan Li ◽  
Peng Zhe Qi

Mechanical noise caused by power equipment vibration is the main source of underwater radiated noise of the ship, and vibration isolation and noise reduction of ship equipment has been widely concerned. Therefore,a vibration isolation system designed for four sets of auxiliary engine of ship cabin was investigated in the paper, aimed to further reveal the influence of various parameters including floating raft shell thickness, excitation source, and different ship hull and installation platform thickness on the vibration level difference of system. The results obtained from numerical analysis using MSC software and experiment indicate that one-dimensional spring element simplified can properly simulate the actual rubber vibration isolator on low frequency bands, and increasing thickness of flat, hull and platform can improve the effect of vibration isolation obviously.

2012 ◽  
Vol 30 (6) ◽  
pp. 063201 ◽  
Author(s):  
Katsuya Iwaya ◽  
Ryota Shimizu ◽  
Akira Teramura ◽  
Seiji Sasaki ◽  
Toru Itagaki ◽  
...  

2013 ◽  
Vol 694-697 ◽  
pp. 316-320
Author(s):  
Xiang Jun Kong ◽  
Er Ming Song ◽  
Chang Zheng Chen

Isolation system of the heat water pumps can be simplified as a double sources exciting and double output double-deck vibration isolation system model, expressions of transmitted power flow and vibration speed to the basement are deduced based on the double sources exciting and double output double-deck vibration isolation system electric-force(E-F) analog picture, the curves of power flow and vibration speed transmitted to basement how the upper deck vibration isolation and intermediate mass effect are drawn by using mat lab program. The results show that the adjusting the upper deck vibration isolation stiffness parameters has little effect on the amplitude of vibration power flow, increasing intermediate mass can move first peak to the low frequency, increasing intermediate mass can obviously reduce t transmitted power flow and transmitted vibration speed amplitude to the basement.


2021 ◽  
pp. 13-17
Author(s):  
D. V. Sitnikov ◽  
◽  
A. A. Burian ◽  

The paper considers a vibration isolation system, in which a force is applied to the moving mass of the active dynamic vibration damper by an actuator in proportion to the measured value of the base response. The amplitude-frequency and impulse characteristics are plotted depending on the parameters of the system, assuming the actuator without distortion generates the force proportional to the base response. It is shown that the considered vibration isolation system is quite effective in the low-frequency region, including in the resonance region of the passive system, both in stationary and nonstationary modes of vibroactive forces


2017 ◽  
Vol 865 ◽  
pp. 480-485
Author(s):  
Jian Liang Li ◽  
Xiao Xi Liu ◽  
Shu Qing Li ◽  
Zhi Fei Tao ◽  
Lei Ma

The research mainly focuses on the performance of the controllable hypocenter in the low frequency band. The hybrid vibration isolation method based on the disturbance observer PID control algorithm is used to improve the excitation signal quality. Based on the analysis of the structure and working principle of vibration isolator, the physical model and mathematical model are established, and the simulation test of ZK-5VIC virtual test vibration and control system is carried out. The experimental platform of hybrid vibration isolation system with low frequency interference is set up. The experiment of excitation and acquisition of low frequency signal is carried out, which provides the theoretical basis and guarantee for the vibration isolation technology in the low frequency range below 3Hz.


1994 ◽  
Author(s):  
Robin T. Stebbins ◽  
David Newell ◽  
Sam N. Richman ◽  
Peter L. Bender ◽  
James E. Faller ◽  
...  

2011 ◽  
Vol 383-390 ◽  
pp. 130-135 ◽  
Author(s):  
Fu Mao Wang ◽  
Chang Guo Wang ◽  
Lan Lan Guo ◽  
Bang Chun Wen ◽  
Yong Li

In this paper, based on the theory of double layered vibration isolation, the finite element dynamic model of floating raft vibration isolation system has been established for the project of vibration and noise control in a heat exchange station. The dynamic model of single pump is simplified an elastic cylinder based on the principle of equivalent parameters, and the elastic raft frame is used of steel structure. The dynamic characteristics of the system is analyzed by used of ANSYS with SOLID45 unit and COMBIN14 spring-damper unit, which provide an important basis for the engineering design of floating raft isolation system with pumping units.


Author(s):  
Liao Dao-Xun ◽  
Lu Yong-Zhong ◽  
Huang Xiao-Cheng

Abstract The multilayer vibration isolation system has been widely applied to isolate vibration in dynamic devices of ships, high-speed vehicles forging hammer and precise instruments. The paper is based on the coordinate transformation of space general motion for mass blocks (rigid bodies) and Lagrangian equation of multilayer vibration isolation system. It gives a strict mathematical derivation on the differential equation of the motion for the system with six degrees of freedom of relative motion between mass blocks (including base). The equations are different from the same kind of equations in the reference literatures. It can be used in the floating raft of ships in order to isolates vibration and decrease noise, also used in design calculation of the multilayer vibration isolation for dynamic machines and precise instruments on the dry land.


2013 ◽  
Vol 397-400 ◽  
pp. 295-303 ◽  
Author(s):  
Fu Niu ◽  
Ling Shuai Meng ◽  
Wen Juan Wu ◽  
Jing Gong Sun ◽  
Wei Hua Su ◽  
...  

The quasi-zero-stiffness vibration isolation system has witnessed significant development due to the pressing demands for low frequency and ultra-low frequency vibration isolation. In this study, the isolation theory and the characteristic of the quasi-zero-stiffness vibration isolation system are illustrated. Based on its implementation mechanics, a comprehensive assessment of recent advances of the quasi-zero-stiffness vibration isolation system is presented. The future research directions are finally prospected.


2017 ◽  
Vol 24 (16) ◽  
pp. 3608-3616 ◽  
Author(s):  
Li Yingli ◽  
Xu Daolin

In view of the excellent performance of a single quasi-zero-stiffness (QZS) device in vibration attenuation, this paper presents a study on a vibration isolation floating raft system constructed with a double-layer QZS mechanism. A QZS device is a typical nonlinear isolator, hence the floating raft system is a coupled highly nonlinear isolation system. To understand the behaviors and its performance in vibration attenuation, an analytical approach is developed to describe the characteristics including the mathematical relationship between amplitude–frequency, force transmissibility, and the effects of the mass ratio and damping ratios on attenuation performance. The outcomes show that the two-degree-of-freedom QZS–QZS system is superior for vibration isolation when compared to the traditional linear system and the two other types of QZS systems. The effective vibration isolation frequency region of the QZS–QZS system is expanded to the low-frequency region by 72%. The QZS system is sensitive to the damping ratio, which decreases the resonance peak significantly. The mass ratio is a crucial design parameter in low-frequency vibration isolation design.


Sign in / Sign up

Export Citation Format

Share Document