A New Type Fatigue Machine Design with High Frequency Large Stroke

2014 ◽  
Vol 496-500 ◽  
pp. 1522-1525 ◽  
Author(s):  
Peng Xu ◽  
Hai Ying Liu ◽  
Yu Tao Men ◽  
Bao Shan Xu ◽  
Jun Lu ◽  
...  

The traditional fatigue machine using stepping motor as driving device has the disadvantages of low efficiency, low frequency and producing heat terribly. This paper presents the development of a new type fatigue machine using voice coil motor which has the advantage of high frequency, high accuracy and easy to control as driving device in order to make up for these deficiencies of the traditional machine. The maximum frequency of fatigue machine can reach 200Hz, and the maximum stroke will reach 30mm. The machine can test the properties of anti-fatigue crack of metal and non-metallic materials and the fatigue lives of mechanical parts. It also can provide the force curve changing with time under different frequencies when carrying on tensile and compressive test on sample, which can greatly improve the accuracy and stability of measuring system

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jiming Chen ◽  
Liping Chen ◽  
Mohammad Shabaz

In the present scenario, image fusion is utilized at a large level for various applications. But, the techniques and algorithms are cumbersome and time-consuming. So, aiming at the problems of low efficiency, long running time, missing image detail information, and poor image fusion, the image fusion algorithm at pixel level based on edge detection is proposed. The improved ROEWA (Ratio of Exponentially Weighted Averages) operator is used to detect the edge of the image. The variable precision fitting algorithm and edge curvature change are used to extract the feature line of the image edge and edge angle point of the feature to improve the stability of image fusion. According to the information and characteristics of the high-frequency region and low-frequency region, different image fusion rules are set. To cope with the high-frequency area, the local energy weighted fusion approach based on edge information is utilized. The low-frequency region is processed by merging the region energy with the weighting factor, and the fusion results of the high findings demonstrate that the image fusion technique presented in this work increases the resolution by 1.23 and 1.01, respectively, when compared to the two standard approaches. When compared to the two standard approaches, the experimental results show that the proposed algorithm can effectively reduce the lack of image information. The sharpness and information entropy of the fused image are higher than the experimental comparison method, and the running time is shorter and has better robustness.


2011 ◽  
Vol 201-203 ◽  
pp. 504-509 ◽  
Author(s):  
Nian Qin Guo ◽  
Hong Min Lou ◽  
Wei Ping Huang

Basing on the traditional vibrating screen with double amplitudes and different frequency, a new type vibrating screen called combining vibrating screen is developed. It consists of two vibrating screen units. Each unit has an independent vibration exciter, realizing that one screen unit has a parameter of high-frequency with small-amplitude while the other screen unit has a parameter of low-frequency with large-amplitude. The two screen units are installed at different obliquities, so that the equal thickness screening principle can be realized. And comparing with the traditional vibrating screen, its screening efficiency and capacity are greatly improved. This new kind vibrating screen is especially suitable for the dry screening to moist particles.


Author(s):  
Smruti R. Panigrahi ◽  
Brian F. Feeny ◽  
Alejandro R. Diaz

We present the underlying dynamics of snap-through structures that exhibit twinkling. Twinkling occurs when the nonlinear structure is loaded slowly and the masses snap-through, converting the low frequency input to high frequency oscillations. We have studied a nonlinear spring-mass chain loaded by a quasistatic pull. The spring forces are assumed to be cubic with intervals of negative stiffness. Depending on the parameters, the system has equilibria at multiple energy levels. The normal form and the bifurcation behaviors for the single and two degree of freedom systems are studied in detail. A new type of bifurcation, which we refer to as a star bifurcation, has been observed for the symmetric two degree of freedom system, which is of codimension four for the undamped case, and codimension three or two for the damped case, depending on the form of the damping.


Author(s):  
G. Y. Fan ◽  
J. M. Cowley

It is well known that the structure information on the specimen is not always faithfully transferred through the electron microscope. Firstly, the spatial frequency spectrum is modulated by the transfer function (TF) at the focal plane. Secondly, the spectrum suffers high frequency cut-off by the aperture (or effectively damping terms such as chromatic aberration). While these do not have essential effect on imaging crystal periodicity as long as the low order Bragg spots are inside the aperture, although the contrast may be reversed, they may change the appearance of images of amorphous materials completely. Because the spectrum of amorphous materials is continuous, modulation of it emphasizes some components while weakening others. Especially the cut-off of high frequency components, which contribute to amorphous image just as strongly as low frequency components can have a fundamental effect. This can be illustrated through computer simulation. Imaging of a whitenoise object with an electron microscope without TF limitation gives Fig. 1a, which is obtained by Fourier transformation of a constant amplitude combined with random phases generated by computer.


Author(s):  
M. T. Postek ◽  
A. E. Vladar

Fully automated or semi-automated scanning electron microscopes (SEM) are now commonly used in semiconductor production and other forms of manufacturing. The industry requires that an automated instrument must be routinely capable of 5 nm resolution (or better) at 1.0 kV accelerating voltage for the measurement of nominal 0.25-0.35 micrometer semiconductor critical dimensions. Testing and proving that the instrument is performing at this level on a day-by-day basis is an industry need and concern which has been the object of a study at NIST and the fundamentals and results are discussed in this paper.In scanning electron microscopy, two of the most important instrument parameters are the size and shape of the primary electron beam and any image taken in a scanning electron microscope is the result of the sample and electron probe interaction. The low frequency changes in the video signal, collected from the sample, contains information about the larger features and the high frequency changes carry information of finer details. The sharper the image, the larger the number of high frequency components making up that image. Fast Fourier Transform (FFT) analysis of an SEM image can be employed to provide qualitiative and ultimately quantitative information regarding the SEM image quality.


1992 ◽  
Vol 1 (4) ◽  
pp. 52-55 ◽  
Author(s):  
Gail L. MacLean ◽  
Andrew Stuart ◽  
Robert Stenstrom

Differences in real ear sound pressure levels (SPLs) with three portable stereo system (PSS) earphones (supraaural [Sony Model MDR-44], semiaural [Sony Model MDR-A15L], and insert [Sony Model MDR-E225]) were investigated. Twelve adult men served as subjects. Frequency response, high frequency average (HFA) output, peak output, peak output frequency, and overall RMS output for each PSS earphone were obtained with a probe tube microphone system (Fonix 6500 Hearing Aid Test System). Results indicated a significant difference in mean RMS outputs with nonsignificant differences in mean HFA outputs, peak outputs, and peak output frequencies among PSS earphones. Differences in mean overall RMS outputs were attributed to differences in low-frequency effects that were observed among the frequency responses of the three PSS earphones. It is suggested that one cannot assume equivalent real ear SPLs, with equivalent inputs, among different styles of PSS earphones.


1971 ◽  
Vol 36 (4) ◽  
pp. 527-537 ◽  
Author(s):  
Norman P. Erber

Two types of special hearing aid have been developed recently to improve the reception of speech by profoundly deaf children. In a different way, each special system provides greater low-frequency acoustic stimulation to deaf ears than does a conventional hearing aid. One of the devices extends the low-frequency limit of amplification; the other shifts high-frequency energy to a lower frequency range. In general, previous evaluations of these special hearing aids have obtained inconsistent or inconclusive results. This paper reviews most of the published research on the use of special hearing aids by deaf children, summarizes several unpublished studies, and suggests a set of guidelines for future evaluations of special and conventional amplification systems.


2016 ◽  
Vol 17 (1) ◽  
pp. 66
Author(s):  
Maria Lina Silva Leite
Keyword(s):  

O objetivo deste estudo foi avaliar os efeitos do Método Pilates sobre a variabilidade da frequência cardíaca, na flexibilidade e nas variáveis antropométricas em indivíduos sedentários. O presente estudo contou com 14 voluntárias do sexo feminino, na faixa etária entre 40 e 55 anos, que realizaram 20 sessões de exercícios do Método Pilates, duas vezes por semana, com duração de 45 minutos cada sessão, dividida em três fases: repouso, exercício e recuperação. As variáveis estudadas foram: os dados antropométricos, flexibilidade avaliada utilizando o teste de sentar-e-alcançar com o Banco de Wells, e intervalos R-R usando um cardiotacômetro. O processamento dos sinais da frequência cardíaca foi efetuado em ambiente MatLab 6.1®, utilizando a TWC. Os dados coletados foram submetidos ao teste de normalidade de Shapiro Wilk e foi utilizado o teste de Wilcoxon e Anova One Way (α = 0,05). Nos resultados, observou-se que não houve diferenças significativas entre os valores antropométricos e de frequência cardíaca, porém houve aumento da flexibilidade com o treinamento. Comparando a primeira e a vigésima sessão com relação aos parâmetros low frequency (LF), high frequency (HF), e relação LF/HF, não houve diferença na fase de repouso e foram constatadas diferenças significativas de LF (p = 0,04) e HF (p = 0,04) na fase de exercício e diferença significativa de LF/HF (p = 0,05) na fase de recuperação. Comparando os parâmetros nos períodos de repouso, exercícios e recuperação durante a primeira sessão e durante a vigésima sessão, não houve diferença significativa nos parâmetros LF, HF e LF/HF. Pode-se concluir que, em relação à flexibilidade, foi observada uma melhora significativa, enquanto a análise da frequência cardíaca caracterizou a intensidade do exercício de 50% da capacidade funcional das voluntárias. Em relação aos parâmetros LF, HF e LF/HF foram observados um aumento da variabilidade da frequência cardíaca, provavelmente produto da atividade do Método Pilates. A Transformada Wavelet (TWC) mostrou-se um Método adequado para as análises da variabilidade da frequência cardíaca.Palavras-chave: frequência cardíaca, Transformada Wavelet, Pilates.


1998 ◽  
Vol 2 ◽  
pp. 115-122
Author(s):  
Donatas Švitra ◽  
Jolanta Janutėnienė

In the practice of processing of metals by cutting it is necessary to overcome the vibration of the cutting tool, the processed detail and units of the machine tool. These vibrations in many cases are an obstacle to increase the productivity and quality of treatment of details on metal-cutting machine tools. Vibration at cutting of metals is a very diverse phenomenon due to both it’s nature and the form of oscillatory motion. The most general classification of vibrations at cutting is a division them into forced vibration and autovibrations. The most difficult to remove and poorly investigated are the autovibrations, i.e. vibrations arising at the absence of external periodic forces. The autovibrations, stipulated by the process of cutting on metalcutting machine are of two types: the low-frequency autovibrations and high-frequency autovibrations. When the low-frequency autovibration there appear, the cutting process ought to be terminated and the cause of the vibrations eliminated. Otherwise, there is a danger of a break of both machine and tool. In the case of high-frequency vibration the machine operates apparently quiently, but the processed surface feature small-sized roughness. The frequency of autovibrations can reach 5000 Hz and more.


2017 ◽  
Vol 2017 (45) ◽  
pp. 83-89
Author(s):  
A.A. Marusenkov ◽  

Using dedicated high-frequency measuring system the distribution of the Barkhausen jumps intensity along a reversal magnetization cycle was investigated for low noise fluxgate sensors of various core shapes. It is shown that Barkhausen (reversal magnetization) noise intensity is strongly inhomogeneous during an excitation cycle. In the traditional second harmonic fluxgate magnetometers the signals are extracted in the frequency domain, as a result, some average value of reversal magnetization noises is contributed to the output signals. In order to fit better the noise shape and minimize its transfer to the magnetometer output the new approach for demodulating signals of these sensors is proposed. The new demodulating method is based on information extraction in the time domain taking into account the statistical properties of cyclic reversal magnetization noises. This approach yields considerable reduction of the fluxgate magnetometer noise in comparison with demodulation of the signal filtered at the second harmonic of the excitation frequency.


Sign in / Sign up

Export Citation Format

Share Document