Friend-Based Prediction Routing Protocol in Socially-Aware Opportunistic Networks

2014 ◽  
Vol 519-520 ◽  
pp. 241-244
Author(s):  
Li Liu

Mobile devices are popular used in peoples life. Generally, most of portable mobile devices are carried by people. Thus, the mobility of mobile devices is influenced heavily by peoples social relationship. Socially-aware Opportunistic Networks are used in intermittently connected networks by use of store-carry-and-forward fashion. It is mainly based on social relationship to design solutions for problem such as routing protocol or data dissemination. In this paper, we exploit social relationship about friendships information among people and use them to predict the contact opportunities. We present Friend-based Prediction routing protocol (FBP) and establish experiment based on ONE. The simulation results show that the efficiency of FBP outperforms Epidemic and PROPHET in higher delivery ratio, lower overhead and shorter average latency.

Author(s):  
Radu Ioan Ciobanu ◽  
Ciprian Dobre

When mobile devices are unable to establish direct communication, or when communication should be offloaded to cope with large throughputs, mobile collaboration can be used to facilitate communication through opportunistic networks. These types of networks, formed when mobile devices communicate only using short-range transmission protocols, usually when users are close, can help applications still exchange data. Routes are built dynamically, since each mobile device is acting according to the store-carry-and-forward paradigm. Thus, contacts are seen as opportunities to move data towards the destination. In such networks data dissemination is usually based on a publish/subscribe model. Opportunistic data dissemination also raises questions concerning user privacy and incentives. In this the authors present a motivation of using opportunistic networks in various real life use cases, and then analyze existing relevant work in the area of data dissemination. The authors present the categories of a proposed taxonomy that captures the capabilities of data dissemination techniques used in opportunistic networks. Moreover, the authors survey relevant techniques and analyze them using the proposed taxonomy.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Halikul Lenando ◽  
Mohamad Alrfaay

In opportunistic networks, the nature of intermittent and disruptive connections degrades the efficiency of routing. Epidemic routing protocol is used as a benchmark for most of routing protocols in opportunistic mobile social networks (OMSNs) due to its high message delivery and latency. However, Epidemic incurs high cost in terms of overhead and hop count. In this paper, we propose a hybrid routing protocol called EpSoc which utilizes the Epidemic routing forwarding strategy and exploits an important social feature, that is, degree centrality. Two techniques are used in EpSoc. Messages’ TTL is adjusted based on the degree centrality of nodes, and the message blocking mechanism is used to control replication. Simulation results show that EpSoc increases the delivery ratio and decreases the overhead ratio, the average latency, and the hop counts as compared to Epidemic and Bubble Rap.


2014 ◽  
Vol 2014 ◽  
pp. 1-14
Author(s):  
Ruiyun Yu ◽  
Pengfei Wang

Opportunistic networks lack end-to-end paths between source nodes and destination nodes, so the communications are mainly carried out by the “store-carry-forward” strategy. Selfish behaviors of rejecting packet relay requests will severely worsen the network performance. Incentive is an efficient way to reduce selfish behaviors and hence improves the reliability and robustness of the networks. In this paper, we propose the node-dependence-based dynamic gaming incentive (NDI) algorithm, which exploits the dynamic repeated gaming to motivate nodes relaying packets for other nodes. The NDI algorithm presents a mechanism of tolerating selfish behaviors of nodes. Reward and punishment methods are also designed based on the node dependence degree. Simulation results show that the NDI algorithm is effective in increasing the delivery ratio and decreasing average latency when there are a lot of selfish nodes in the opportunistic networks.


2015 ◽  
Vol 74 (9) ◽  
Author(s):  
Nur Asfarina Idrus ◽  
Jiwa Abdullah

The specific characteristic of underwater environment introduces new challenges for the networking protocols. Underwater Wireless Sensor Networks (UWSN) and terrestrial Wireless Sensor Networks (WSN) share some common properties but their differences necessitate specialized new protocols for successful underwater communication. In this paper, a specialized protocol, known as Directional Flooding Routing Protocol is being chosen as the protocol to implement the routing mechanism for underwater sensor networks (UWSNs). The protocol is analyzed and evaluated. Simulation experiments have been carried out to find the suitability of various protocols for the sub aquatic transmission medium, whether in freshwater or seawater. The goal of this paper is to produce simulation results that would illustrate the performances of the protocol for a given metric such as end-to-end delay, packet delivery ratio and energy consumption. By analyzing the simulation results, DFR is considerably reliable for UWSN because this protocol is suitable for the sub aquatic transmission medium such as seawater.   


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2073
Author(s):  
Seho Han ◽  
Kisong Lee ◽  
Hyun-Ho Choi ◽  
Howon Lee

In opportunistic device-to-device (D2D) networks, the epidemic routing protocol can be used to optimize the message delivery ratio. However, it has the disadvantage that it causes excessive coverage overlaps and wastes energy in message transmissions because devices are more likely to receive duplicates from neighbors. We therefore propose an efficient data dissemination algorithm that can reduce undesired transmission overlap with little performance degradation in the message delivery ratio. The proposed algorithm allows devices further away than the k-th furthest distance from the source device to forward a message to their neighbors. These relay devices are determined by analysis based on a binomial point process (BPP). Using a set of intensive simulations, we present the resulting network performances with respect to the total number of received messages, the forwarding efficiency and the actual number of relays. In particular, we find the optimal number of relays to achieve almost the same message delivery ratio as the epidemic routing protocol for a given network deployment. Furthermore, the proposed algorithm can achieve almost the same message delivery ratio as the epidemic routing protocol while improving the forwarding efficiency by over 103% when k≥10.


2017 ◽  
Vol 13 (2) ◽  
pp. 87 ◽  
Author(s):  
Jose V. V. Sobral ◽  
Joel J. P. C. Rodrigues ◽  
Neeraj Kumar ◽  
Chunsheng Zhu ◽  
Raja W. Ahmad

LOADng (Lightweight On-demand Ad hoc Distance-vector Routing Protocol - Next Generation) is an emerging routing protocol that emerged as an alternative to RPL (IPv6 Routing Protocol for Low power and Lossy Networks). Although some work has been dedicated to study LOADng, these works do not analyze the performance of this protocol with different routing metrics. A routing metric is responsible for defining values for paths during the route creation process. Moreover, based on these metrics information a routing protocol will select the path to forward a message. Thus, this work aims to realize a performance assessment study considering different routing metrics applied to LOADng. The scenarios under study consider different traffic patterns and network sizes. The routing metrics are evaluated considering the packet delivery ratio, average energy spent per bit delivered, average latency, and number of hops. The results reveals that routing metrics used by this protocol may influence (directly) the network performance.


2019 ◽  
Vol 11 (2) ◽  
pp. 34-46
Author(s):  
Shuangkui Xia ◽  
Meihua Liu ◽  
Xinchen Zhang ◽  
Hong Sun ◽  
Mao Tian

Delay tolerant networks (DTNs) represent a class of intermittently connected networks. In such networks, messages are hard to track since they are transmitted by opportunistic encounters between mobile nodes. This feature makes DTN an appropriate masking channel for information hiding systems. However, the DTN often has poor communication quality, given that it suffers from frequent disruptions. In order to improve the communication quality of DTN and meet the needs of information hiding system, an efficient routing strategy is proposed in this article. On the other hand, in information hiding systems, a relatively long Time-To-Live (TTL) of messages will increase the risk of the message being exposed. To achieve a balance between delivery ratio and concealment, the sensitivity of message TTL is analyzed and a suitable value of lifetime is given. Finally, the simulation results show that the proposed algorithm can improve the effectiveness of message transmission, and the DTN can be used as masking channel to realize information hiding system.


2019 ◽  
Vol 10 (2) ◽  
pp. 84-109 ◽  
Author(s):  
M. Syed Rabiya ◽  
R. Ramalakshmi

In an Intermittent Connected Networks / Opportunistic Networks, routing protocols follow store-carry-forward routing mechanism to deliver messages to destination. One of the application scenarios which makes use of opportunistic networks to route the packet from source to destination is an Emergency Search and Rescue operation where rescuer nodes get partitioned frequently and carry out their rescue activities in different locations. As wireless device has a short transmission range, communication between any two partitioned networks occurs only through the node mobility. The Probability based Routing, provides high packet delivery rate with high overhead. In this paper, a new technique called Replica Reduced and Energy-based routing protocol (REB) is proposed to control the replicas and increase the packet delivery ratio in emergency scenarios. Through simulation, this article demonstrates that the proposed system increases delivery rate and reduces overhead and energy consumption considerably, resulting in increased life span of the network.


Information ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 504
Author(s):  
Khuram Khalid ◽  
Isaac Woungang ◽  
Sanjay Kumar Dhurandher ◽  
Jagdeep Singh ◽  
Joel J. P. C. Rodrigues

Opportunistic networks (OppNets) are a type of challenged network where there is no guaranteed of end-to-path between the nodes for data delivery because of intermittent connectivity, node mobility and frequent topology changes. In such an environment, the routing of data is a challenge since the battery power of the mobile nodes drains out quickly because of multi-routing activities such as scanning, transmitting, receiving, and computational processing, effecting the overall network performance. In this paper, a novel routing protocol for OppNets called Energy-Efficient Check-and-Spray Geocast Routing (EECSG) is proposed, which introduces an effective way of message distribution in the geocasting region to all residing nodes while saving the energy consumption by restricting the unnecessary packet transmission in that region. A Check-and-Spray technique is also introduced to eliminate the overhead of packets in the geocast region. The proposed EECSG is evaluated by simulations and compared against the Efficient and Flexible Geocasting for Opportunistic Networks (GSAF) and the Centrality- Based Geocasting for Opportunistic networks (CGOPP) routing protocols in terms of average latency, delivery ratio, number of messages forwarded, number of dead nodes, overhead ratio, and hop count, showing superior performance.


2018 ◽  
Vol 8 (11) ◽  
pp. 2215 ◽  
Author(s):  
Eun Lee ◽  
Dong Seo ◽  
Yun Chung

In opportunistic networks such as delay tolerant network, a message is delivered to a final destination node using the opportunistic routing protocol since there is no guaranteed routing path from a sending node to a receiving node and most of the connections between nodes are temporary. In opportunistic routing, a message is delivered using a ‘store-carry-forward’ strategy, where a message is stored in the buffer of a node, a node carries the message while moving, and the message is forwarded to another node when a contact occurs. In this paper, we propose an efficient opportunistic routing protocol using the history of delivery predictability of mobile nodes. In the proposed routing protocol, if a node receives a message from another node, the value of the delivery predictability of the receiving node to the destination node for the message is managed, which is defined as the previous delivery predictability. Then, when two nodes contact, a message is forwarded only if the delivery predictability of the other node is higher than both the delivery predictability and previous delivery predictability of the sending node. Performance analysis results show that the proposed protocol performs best, in terms of delivery ratio, overhead ratio, and delivery latency for varying buffer size, message generation interval, and the number of nodes.


Sign in / Sign up

Export Citation Format

Share Document