Study on Principle and Application of Heat Pump Technology

2014 ◽  
Vol 525 ◽  
pp. 607-610 ◽  
Author(s):  
Jian Zhang ◽  
Hui Yu Wang ◽  
Jian Zhang

This paper studies the low temperature heat source heat pumps to improve the efficiency of the heat pump unit with economic principles and the use of compressed improve the working conditions of the compressor, and to explore the system operating mode. A new test run integrated heat pump system is designed. Heat pump system can be controlled by the intelligent control of the implementing agencies, to improve the economic system, the research of this paper can provide a potential basis for the efficient use of energy heat pump.

HortScience ◽  
1994 ◽  
Vol 29 (4) ◽  
pp. 249a-249
Author(s):  
Eric A. Lavoie ◽  
Damien de Halleux ◽  
André Gosselin ◽  
Jean-Claude Dufour

The main objective of this research was to produce a simulated model that permitted the evaluation of operating costs of commercial greenhouse tomato growers with respect to heating methods (hot air, hot water, radiant and heat pumps) and the use of artificial lighting for 1991 and 1992. This research showed that the main factors that negatively influence profitability were energy consumption during cold periods and the price of tomatoes during the summer season. The conventional hot water system consumed less energy than the heat pump system and produced marketable fruit yields similar to those from the heat pump system. The hot water system was generally more profitable in regards to energy consumption and productivity. Moreover, investment costs were less; therefore, this system gives best overall financial savings. As for radiant and hot air systems, their overall financial status falls between that of the hot water system and the heat pump. The radiant system proved to be more energy efficient that the hot air system, but the latter produced a higher marketable fruit yield over the 2-year study.


2022 ◽  
Vol 182 ◽  
pp. 86-101
Author(s):  
Haidan Wang ◽  
Yulong Song ◽  
Yiyou Qiao ◽  
Shengbo Li ◽  
Feng Cao

2019 ◽  
Vol 38 (1) ◽  
pp. 201-221 ◽  
Author(s):  
Tianfu Xu ◽  
Fengyu Li ◽  
Bo Feng ◽  
Guanhong Feng ◽  
Zhenjiao Jiang

Shallow geothermal energy is stable and clean. Using a heat pump to produce groundwater and realize heating and cooling can effectively prevent haze and reduce energy consumption. To reduce engineering costs, many buildings in Beijing, China, plan to utilize single-well groundwater source heat pumps. Numerical modeling is an effective way to gain an understanding of thermal transport processes. However, wellbore-reservoir coupling and the uncertainty of productivity due to geological parameters make simulation difficult. A wellbore-reservoir-integrated fluid and heat transport model is defined by T2Well simulator to predict the productivity of a typical single-well system, with consideration of complex geological factors. The model is validated by the analytical model developed in Beijing, China. The fluid processes in the wellbore are described by 1 D non-Darcy flow, and the reservoir 3 D fluid and heat transport processes are calculated. Six crucial factors satisfying a random distribution are used, and for a single well that can supply heat for an area of 9000 m2, the output temperature during the heating season ranges from 11°C to 15°C.


2005 ◽  
Vol 128 (1) ◽  
pp. 28-34 ◽  
Author(s):  
Onder Ozgener ◽  
Arif Hepbasli

The main objective in doing the present study is twofold, namely (i) to review briefly the utilization of geothermally heated greenhouses and geothermal heat pumps in Turkey, since the system studied utilizes both renewable energy resources and (ii) to present the Analytical Hierarchy Process (AHP) as a potential decision making method for use in a greenhouse integrated solar assisted geothermal heat pump system (GISAGHPS), which was installed in the Solar Energy Institute of Ege University, Izmir, Turkey. This investigation may also be regarded as the one of the limited studies on the application of the AHP method to GISAGHPs, as no studies on the GISAGHPS have appeared in the literature. In this context, an economic analysis is performed based on the life cycle costing technique first. The results are then evaluated by applying the AHP method to a study, which is a comparative study on the GISAGHPS and split system. The results indicated that the GISAGHPS is economically preferable to the conventional split heating/cooling system under Turkey’s conditions.


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Maarten G. Sourbron ◽  
Nesrin Ozalp

With reducing energy demand and required installed mechanical system power of modern residences, alternate heat pump system configurations with a possible increased economic viability emerge. Against this background, this paper presents a numerically examined energy feasibility study of a solar driven heat pump system for a low energy residence in a moderate climate, where a covered flat plate solar collector served as the sole low temperature heat source. A parametric study on the ambient-to-solarfluid heat transfer coefficient was conducted to determine the required solar collector heat transfer characteristics in this system setup. Moreover, solar collector area and storage tank volume were varied to investigate their impact on the system performance. A new performance indicator “availability” was defined to assess the contribution of the solar collector as low temperature energy source of the heat pump. Results showed that the use of a solar collector as low temperature heat source was feasible if its heat transfer rate (UA-value) was 200 W/K or higher. Achieving this value with a realistic solar collector area (A-value) required an increase of the overall ambient-to-solarfluid heat transfer coefficient (U-value) with a factor 6–8 compared to the base case with heat exchange between covered solar collector and ambient.


Sign in / Sign up

Export Citation Format

Share Document