Application of Thermal Gas Mass Flow Meter in EGR Cooler Test and Analysis System

2014 ◽  
Vol 530-531 ◽  
pp. 225-232
Author(s):  
Ping Song ◽  
Zhi Yong Hao ◽  
Da Yuan Tao ◽  
Xiao Shuai Ren ◽  
Xue Dong Zhang ◽  
...  

This paper studied the principles of thermal gas mass flow meter. According to the car engine EGR cooler working principle, we found out a kind of heat dissipation gas mass flow meter to measure the mass flow quantity of the gas in the EGR cooler test and analysis system which is a newly applied invention patent. We analyzed various parameters of the gas mass flow meter suitable to the system. Meanwhile, in order to verify reliability of the thermal gas mass flow meter in the system, we adopted CFD method to simulate the EGR cooler by using empirical parameters, and collected several related sensor parameters of the EGR cooler in the condition that the inlet temperature was constantly at 368K while the coolant had 4 kinds of degrees. Combining heat empirical formula, we got the EGR cooler outlet temperature and the overall heat transfer coefficient. After comparing the calculated values of the gas path total EGR cooler outlet temperature and heat transfer coefficients with the experimental values, we found that the outlet temperature values of experiment were smaller than the calculated values by averagely 1.17%, while the average experimental values of the overall heat transfer coefficient were 3.1% larger than the calculated values. Thus, this type of mass flow meter has good stability in the newly applied Chinese patent EGR cooler performance test and analysis system.

2017 ◽  
Vol 45 ◽  
pp. 155-163 ◽  
Author(s):  
S. Nallusamy

Nanotechnology has become one of the fastest growing scientific and engineering disciplines. Nano fluids have been established to possess enhanced thermal and physical properties such as thermal conductivity, thermal diffusivity, viscosity and convective heat transfer coefficients. The aim of this research article is to analyze the overall heat transfer coefficient by doing an experimental investigation on the convective heat transfer and flow characteristics of a nano fluid. In this research, an attempt was made for the nano fluid consisting of water and 1% volume concentration of Al2O3/water Nano fluid flowing in a parallel flow, counter flow in shell and tube heat exchanger under laminar flow condition. The 50nm diameter Al2O3nanoparticles are used in this investigation and was found that the overall heat transfer coefficient and convective heat transfer coefficient of nano fluid to be slightly higher than that of the base liquid at same mass flow rate and inlet temperature. Three samples of dissimilar mass flow rates have been identified for conducting the experiments and their results are continuously monitored and reported. The experimental analysis results were concluded that the heat transfer and overall heat transfer coefficient enhancement is possible with increase in the mass flow rate of fluid and Al2O3/water nano fluid on a comparative basis.


2015 ◽  
Vol 62 (4) ◽  
pp. 509-522 ◽  
Author(s):  
R. Dharmalingam ◽  
K.K. Sivagnanaprabhu ◽  
J. Yogaraja ◽  
S. Gunasekaran ◽  
R. Mohan

Abstract Cooling is indispensable for maintaining the desired performance and reliability over a very huge variety of products like electronic devices, computer, automobiles, high power laser system etc. Apart from the heat load amplification and heat fluxes caused by many industrial products, cooling is one of the major technical challenges encountered by the industries like manufacturing sectors, transportation, microelectronics, etc. Normally water, ethylene glycol and oil are being used as the fluid to carry away the heat in these devices. The development of nanofluid generally shows a better heat transfer characteristics than the water. This research work summarizes the experimental study of the forced convective heat transfer and flow characteristics of a nanofluid consisting of water and 1% Al2O3 (volume concentration) nanoparticle flowing in a parallel flow, counter flow and shell and tube heat exchanger under laminar flow conditions. The Al2O3 nanoparticles of about 50 nm diameter are used in this work. Three different mass flow rates have been selected and the experiments have been conducted and their results are reported. This result portrays that the overall heat transfer coefficient and dimensionless Nusselt number of nanofluid is slightly higher than that of the base liquid at same mass flow rate at same inlet temperature. From the experimental result it is clear that the overall heat transfer coefficient of the nanofluid increases with an increase in the mass flow rate. It shows that whenever mass flow rate increases, the overall heat transfer coefficient along with Nusselt number eventually increases irrespective of flow direction. It was also found that during the increase in mass flow rate LMTD value ultimately decreases irrespective of flow direction. However, shell and tube heat exchanger provides better heat transfer characteristics than parallel and counter flow heat exchanger due to multi pass flow of nanofluid. The overall heat transfer coefficient, Nusselt number and logarithmic mean temperature difference of the water and Al2O3 /water nanofluid are also studied and the results are plotted graphically.


2019 ◽  
Vol 8 (2) ◽  
pp. 2529-2533

The analysis of heat transfer of automotive exhaust system is most important since their prominence in the design and also in the optimization phase of exhaust after treatment system.This paperdeals with the process which can be useful to predict the overall heat transfer coefficient for the transient flow of pipe in the after treatment system. This considers the convection of heat along gas flow, the convection between gas and wall, conduction through wall, radiation and of course convection to the ambient. Governing equations are obtained for the transient flow in a pipe for calculating gas temperature and wall temperature at distance x and time t. Analytical solution will be computed using CFD techniques for these governing equations. From the obtained analytical solution to the transient flow in pipe an excel tool will be developed which can be able to give the outlet temperature of the pipe in transient flow at length x and time t, total heat loss from pipe to the ambient, overall heat transfer coefficient for the pipe


2017 ◽  
Vol 16 (05n06) ◽  
pp. 1750020 ◽  
Author(s):  
S. Nallusamy ◽  
N. Manikanda Prabu

Heat exchanger plays an essential part in industrial sector in transferring the heat energy. Heat is exchanged between fluids in convection and conduction mode through the walls of the heat exchanger. If the heat transfer medium has low thermal conductivity, it will greatly limit the efficiency of the heat exchanger. Whenever the system acts subjected to an increase in the heat load, heat fluxes caused by more power and smaller size, cooling is one of the technical challenges faced by the industries. The objective of this research work is to evaluate the overall heat transfer coefficient through an experimental analysis on the convective heat transfer and flow characteristics of a nanofluid. In our experiment, the nanofluid consists of water and one percentage volume concentration of Al2O3-water nanofluid flowing through parallel and counter flow in shell and tube heat exchangers. About 50[Formula: see text]nm diameter of Al2O3 nanoparticles was used in this analysis and found that the overall heat transfer coefficient and convective heat transfer coefficient of nanofluid were slightly higher than those of the base liquid at same mass flow rate and inlet temperature. Here, there are three samples of dissimilar mass flow rates, which have been identified for conducting the experiments and their results are continuously monitored and reported. Finally, the observed results through an experimental investigation were presented and concluded that the enhancement of overall heat transfer coefficient is likely to be feasible by means of increasing the mass flow rate of base fluid and prepared nanofluid on the proportional basis.


2019 ◽  
Vol 111 ◽  
pp. 01001
Author(s):  
Hansol Lim ◽  
Hye-Jin Cho ◽  
Seong-Yong Cheon ◽  
Soo-Jin Lee ◽  
Jae-Weon Jeong

A phase change material based radiant cooling panel with thermoelectric module (PCM-TERCP) is proposed in this study. It consists of two aluminium panels, and phase change materials (PCMs) sandwiched between the two panels. Thermoelectric modules (TEMs) are attached to one of the aluminium panels, and heat sinks are attached to the top side of TEMs. PCM-TERCP is a thermal energy storage concept equipment, in which TEMs freeze the PCM during the night whose melting temperature is 16○C. Therefore, the radiant cooling panel can maintain a surface temperature of 16◦C without the operation of TEM during the day. Furthermore, it is necessary to design the PCM-TERCP in a way that it can maintain the panel surface temperature during the targeted operating time. Therefore, the numerical model was developed using finite difference method to evaluate the thermal behaviour of PCM-TERCP. Experiments were also conducted to validate the performance of the developed model. Using the developed model, the possible operation time was investigated to determine the overall heat transfer coefficient required between radiant cooling panel and TEM. Consequently, the results showed that a overall heat transfer coefficient of 394 W/m2K is required to maintain the surface temperature between 16○C to 18○C for a 3 hours operation.


2009 ◽  
Vol 62-64 ◽  
pp. 694-699 ◽  
Author(s):  
E. Akpabio ◽  
I.O. Oboh ◽  
E.O. Aluyor

Shell and tube heat exchangers in their various construction modifications are probably the most widespread and commonly used basic heat exchanger configuration in the process industries. There are many modifications of the basic configuration which can be used to solve special problems. Baffles serve two functions: Most importantly, they support the tubes in the proper position during assembly and operation and prevent vibration of the tubes caused by flow-induced eddies, and secondly, they guide the shell-side flow back and forth across the tube field, increasing the velocity and the heat transfer coefficient. The objective of this paper is to find the baffle spacing at fixed baffle cut that will give us the optimal values for the overall heat transfer coefficient. To do this Microsoft Excel 2003 package was employed. The results obtained from previous studies showed that to obtain optimal values for the overall heat transfer coefficient for the shell and tube heat exchangers a baffle cut of 20 to 25 percent of the diameter is common and the maximum spacing depends on how much support the tubes need. This was used to validate the results obtained from this study.


Sign in / Sign up

Export Citation Format

Share Document