Design of a 6-DOF VCM-Driven Micro Stage

2014 ◽  
Vol 532 ◽  
pp. 3-6 ◽  
Author(s):  
Jae Heon Jeong ◽  
Myeong Hyeon Kim ◽  
Si Woong Woo ◽  
Da Hoon Ahn ◽  
Dong Pyo Hong

This paper presents design of micro stage performing 6 degree-of-freedom (DOF) motions, which actuated by voice coil motor (VCM). The VCMs generate forces to perform in-plane motions and out-of-plane motions. The stage is supported by springs for compensating mass of the moving part of the stage and the stiffness of the springs has been chosen to meet the moving range requirement and to have high resonant frequency at the same time. Moving magnet type has been selected against moving coil type due to few merits of the type. The size of the stage is 380 X 380 X 60 mm3 and the motions are measured by laser interferometer and gap sensors.

Author(s):  
Fangrong Hu ◽  
Jun Yao ◽  
Chuankai Qiu ◽  
Dajia Wang

In this paper, a MEMS mirror actuated by an electrostatic repulsive force has been proposed and analyzed. The mirror consists of four U-shape springs, a fixed bottom electrode and a movable top electrode, there are many comb fingers on the edges of both electrodes. When the voltage is applied to the top and bottom electrodes, an asymmetric electric field is generated to the top movable fingers and springs, thus a net electrostatic force is produced to move the top plate out of plane. This designed micro-mirror is different from conventional MDM based on electrostatic-attractive-force, which is restricted by one-third thickness of the sacrificial layer for the pull-in phenomenon. The characteristic of this MDM has been analyzed, the result shows that the resonant frequency of the first mode is 8 kHz, and the stroke reaches 10μm at 200V, a MDM with large strokes can be realized for the application of adaptive optics in optical aberrations correction.


2006 ◽  
Vol 06 (04) ◽  
pp. 493-512 ◽  
Author(s):  
NOËL CHALLAMEL

The aim of this paper is to show how geometrical non-linearity may induce equivalent softening in a simple two-degree-of-freedom spatial elastic system. The generic structural model studied is a generalization of Augusti's spatial model, incorporating lateral loading. This model could be used as a teaching model to understand the softening effect induced by out-of-plane buckling. The lateral loading in the plane of maximal stiffness is considered as the varying load parameter, whereas the vertical load is perceived as a constant parameter. It is shown that a bifurcation occurs at the critical horizontal load. The fundamental path becomes unstable, beyond this critical value. However, two symmetrical bifurcate solutions appear, whose stability depend on the structural parameters value. No secondary bifurcation is observed for this system. The presented system possesses imperfection sensitivity, and imperfection insensitivity, depending on the values of the structural parameters. In any case, for sufficiently large rotations, collapse occurs with unstable softening branches induced by spatial buckling.


1958 ◽  
Vol 62 (574) ◽  
pp. 752-757 ◽  
Author(s):  
S. Hother-Lushington ◽  
D. C. Johnson

It is Sometimes required to find the maximum amplitudes of vibration attained and the speeds at which they occur when a machine is run through its critical speed with different accelerations. The solution of this problem for single degree of freedom systems has been obtained by Lewis and by Ellington and McCallion for mechanical vibrations and by Hok for the equivalent electrical case. These solutions require higher mathematics (contour integration, Fresnel's integrals or series solutions leading to Bessel functions). The purpose of this note is to show how, by using simple integration only, an alternative method of solution can be obtained for both zero and small values of damping.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Myung-Joon Lee ◽  
Il-Kwon Oh

AbstractValley degree of freedom, associated with the valley topological phase, has propelled the advancement of the elastic waveguide by offering immunity to backscattering against bending and weak perturbations. Despite many attempts to manipulate the wave path and working frequency of the waveguide, internal characteristic of an elastic wave such as rich polarization has not yet been utilized with valley topological phases. Here, we introduce the rich polarization into the valley degree of freedom, to achieve topologically protected in-plane and out-of-plane mode separation of an elastic wave. Accidental degeneracy proves its real worth of decoupling the in-plane and out-of-plane polarized valley Hall phases. We further demonstrate independent and simultaneous control of in-plane and out-of-plane waves, with intact topological protection. The presenting procedure for designing the topologically protected wave separation based on accidental degeneracy will widen the valley topological physics in view of both generation mechanism and application areas.


SPIN ◽  
2019 ◽  
Vol 09 (03) ◽  
pp. 1950009 ◽  
Author(s):  
Rongzhi Zhao ◽  
Wenchao Chen ◽  
Chenglong Hu ◽  
Luyang Chen ◽  
Jian Zhang ◽  
...  

Understanding the dynamic behavior of an isolated skyrmion with external perturbations has been obstructed due to the difficulty in experimentally observing such an instantaneous phenomenon within picoseconds. Herein, we theoretically investigated the spin-transfer-torque-induced dynamics of an isolated skyrmion excited by external nanosecond-pulse perturbations. It is found that a redshift of the resonant frequency appears under a pulse polarized current with [Formula: see text][Formula: see text]A/m2 and [Formula: see text][Formula: see text]GHz, while a blueshift is presented under a combined perturbation of the pulse polarized current and an out-of-plane ac magnetic field. The physic origins of the redshift and the blueshift are ascribed to the increased average energy of system from [Formula: see text][Formula: see text]J to [Formula: see text][Formula: see text]J and integer multiple (twofold and fourfold) oscillation frequencies of total energy, respectively. The present study could thus provide an insight to the micromagnetic dynamics of skyrmion under the magnetoelectric couplings.


2020 ◽  
Vol 309 ◽  
pp. 112014 ◽  
Author(s):  
Chang-Lin Hsieh ◽  
Chien-Sheng Liu ◽  
Chih-Chun Cheng

Sign in / Sign up

Export Citation Format

Share Document