Design of a Compact UWB Antenna Using Two Modified U-Shaped Slots for Satellite Frequency Rejection in C-Band and X-Band

2014 ◽  
Vol 538 ◽  
pp. 189-192
Author(s):  
Li Li ◽  
Zhang Zhuo Zhao ◽  
Xiao Li Yin

A novel printed microstrip-fed monopole antenna with a dual band notched characteristic has been designed and analyzed. The antenna has a rather compact structure with total size of 18×12×1.6mm3. Band notched has been created by inserting slot on the radiating patch and on the microstrip. Wide impendence bandwidth is produced by modify the ground plane. Good radiation performance is achieved in the frequency band of 3 to over 13 GHz with dual band notched of 3.7-4.2 and 7.0-8.0 GHz.

2021 ◽  
Vol 72 (4) ◽  
pp. 268-272
Author(s):  
Susmita Bala ◽  
P. Soni Reddy ◽  
Sushanta Sarkar ◽  
Partha Pratim Sarkar

Abstract A wideband printed monopole antenna with two rejection bands is proposed in this article. The antenna provides a wideband from 5.4 GHz to 17.2 GHz with two rejection bands covering 6.9 to 7.4 GHz and 8.3 to 9.2 GHz with two peak notch frequencies of 7.2 GHz and 8.6 GHz respectively. Tested peak gain at two peak notch frequencies of 7.2 GHz and 8.6 GHz are 2.5 dBi and −1.5 dBi respectively. These two rejection bands are effectively used to avoid undesired intrusion from the C band and the X band. The lower rejection band has been realized by cutting an open ring circular slot on the metal patch whereas U like slot has been inserted on the ground plane just beneath the feed line to achieve the upper rejection band. Simulated and tested S 11 parameter, gain, radiation efficiency, E-H radiation patterns, and surface currents of the antenna are presented here. The antenna uses small dimensions and it is very simple to design. The proposed antenna confirms that it is useful for short-range and fast data communication systems.


2012 ◽  
Vol 195-196 ◽  
pp. 13-16
Author(s):  
Wen Bo Zeng ◽  
Jia Zhao ◽  
Bao Zhong Ke ◽  
Qi Qi Wu

An ultra-wideband (UWB) printed antenna with dual band-notched characteristic is presented in this paper. The proposed antenna is composed of a semi-circular patch fed by a tapered coplanar waveguide (CPW) and an unclosed ground plane, which are printed onto the same side of a FR4 printed circuit board (PCB) with an overall size of 30 mm × 30 mm × 1.5 mm. By embedding a simple arc-shaped slot in the patch and adding a T-shaped strip on the top of the patch, two notched frequency bands for rejection of WiMAX and WLAN system can be realized. The characteristics of the proposed antenna are investigated by using the software HFSS and validated experimentally, both simulated and measured results show that the proposed antenna prototype achieves good impedance matching over an frequency band from 2.1011.40 GHz for VSWR2 with two notched bands over the frequency range of 5-5.95 GHz and 3.1-3.9 GHz. Furthermore, a relatively stable gain and suitable radiation patterns are also achieved in both lower and upper UWB frequency band.


2020 ◽  
Vol 9 (1) ◽  
pp. 35-40
Author(s):  
M. Elhabchi ◽  
M. N. Srifi ◽  
R. Touahni

In this paper, we present a modified UWB antenna with hexagonal slotted ground plane inspired with a double combined symmetric T-shaped slots and dual rotated L-shaped strip for dual band notched characteristics. Initially, the operating frequency range is from 3GHz to 12 GHz. To eliminate the unwanted C-band (3.625-4.2GHz) and the entire uplink and downlink of X-band satellite communication systems (7.25 -8.39 GHz) frequency bands, we are investigating the conventional UWB patch antenna and loaded it with a mentioned strips and slots respectively. The performances of the antenna are optimized both by CST Microwave Studio and Ansoft HFSS. To further analyze the parametric effects of the slots and strips, the surface current distribution is presented and discussed. The antenna gain versus frequency gives an acceptable value except the notched band regions, these values are   reduced from its normal  to be  a negative in  the notched bands (3.625-4.2GHz) and (7.25 to 8.39 GHz).


A circular monopole antenna with coplanar waveguide feeding is designed for wideband applications. Different electromagnetic bandgap structures are placed beneath the antenna ground plane to improve the gain and the radiation efficiency. The depicted model occupies the dimension of 50X50X1.60 mm on FR4 substrate with dielectric constant of 4.3. Aerial operating in the dual band of 1.5-3.6 GHz (GPS, LTE, Bluetooth and Wi-Fi applications) and 4.8-15 GHz (WLAN, X-Band and Satellite communication applications) with bandwidth of 2.10 and 10.20 GHz respectively. The final novel antenna design provides good correlation with simulation results.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 269
Author(s):  
Ayman A. Althuwayb ◽  
Mohammad Alibakhshikenari ◽  
Bal S. Virdee ◽  
Pancham Shukla ◽  
Ernesto Limiti

This research article describes a technique for realizing wideband dual notched functionality in an ultra-wideband (UWB) antenna array based on metamaterial and electromagnetic bandgap (EBG) techniques. For comparison purposes, a reference antenna array was initially designed comprising hexagonal patches that are interconnected to each other. The array was fabricated on standard FR-4 substrate with thickness of 0.8 mm. The reference antenna exhibited an average gain of 1.5 dBi across 5.25–10.1 GHz. To improve the array’s impedance bandwidth for application in UWB systems metamaterial (MTM) characteristics were applied it. This involved embedding hexagonal slots in patch and shorting the patch to the ground-plane with metallic via. This essentially transformed the antenna to a composite right/left-handed structure that behaved like series left-handed capacitance and shunt left-handed inductance. The proposed MTM antenna array now operated over a much wider frequency range (2–12 GHz) with average gain of 5 dBi. Notched band functionality was incorporated in the proposed array to eliminate unwanted interference signals from other wireless communications systems that coexist inside the UWB spectrum. This was achieved by introducing electromagnetic bandgap in the array by etching circular slots on the ground-plane that are aligned underneath each patch and interconnecting microstrip-line in the array. The proposed techniques had no effect on the dimensions of the antenna array (20 mm × 20 mm × 0.87 mm). The results presented confirm dual-band rejection at the wireless local area network (WLAN) band (5.15–5.825 GHz) and X-band satellite downlink communication band (7.10–7.76 GHz). Compared to other dual notched band designs previously published the footprint of the proposed technique is smaller and its rejection notches completely cover the bandwidth of interfering signals.


Author(s):  
A H Majeed ◽  
K H Sayidmarie

<p class="Default">In this paper, a new approach to the design of an UWB monopole antenna with dual band-notched characteristics is presented.   The antenna has the form of an elliptical monopole over a ground plane having an elliptical slot to achieve the UWB. The dual-band notch function is created by inserting a U-shaped and a C-shaped slots on the radiating patch, thus no extra size is needed. The proposed antenna shows a good omnidirectional radiation pattern across the band from 3.2 to more than 14 GHz. The dual band-rejection is for 4.88-5.79GHz centered at 5.4GHz and 7.21-8.46 GHz centered at 7.8 GHz. The antenna prototype using the FR-4 substrate with ε<sub>r</sub>=4.3 has a compact size of 25mm×25 mm ×1.45mm. The fabricated prototype showed experimental results comparable to those obtained from the simulations.</p>


Frequenz ◽  
2020 ◽  
Vol 74 (5-6) ◽  
pp. 201-209
Author(s):  
Mohammad Ahmad Salamin ◽  
Sudipta Das ◽  
Asmaa Zugari

AbstractIn this paper, a novel compact UWB antenna with variable notched band characteristics for UWB applications is presented. The designed antenna primarily consists of an adjusted elliptical shaped metallic patch and a partial ground plane. The proposed antenna has a compact size of only 17 × 17 mm2. The suggested antenna covers the frequency range from 3.1 GHz to 12 GHz. A single notched band has been achieved at 7.4 GHz with the aid of integrating a novel closed loop resonator at the back plane of the antenna. This notched band can be utilized to alleviate the interference impact with the downlink X-band applications. Besides, a square slot was cut in the loop in order to obtain a variable notched band. With the absence and the existence of this slot, the notched band can be varied to mitigate interference of the upper WLAN band (5.72–5.82 GHz) and X-band (7.25–7.75 GHz) with UWB applications. A good agreement between measurement and simulation results was achieved, which affirms the appropriateness of this antenna for UWB applications.


2019 ◽  
Vol 12 (3) ◽  
pp. 252-258 ◽  
Author(s):  
Liping Han ◽  
Jing Chen ◽  
Wenmei Zhang

AbstractA compact ultra-wideband (UWB) monopole antenna with reconfigurable band-notch characteristics is demonstrated in this paper. It is comprised of a modified rectangular patch and a defected ground plane. The band-notch property in the WiMAX and WLAN bands is achieved by etching an open-ended slot on the radiating patch and an inverted U-shaped slot on the ground plane, respectively. To obtain the reconfigurable band-notch performance, two PIN diodes are inserted in the slots, and then the notch-band can be switched by changing the states of the PIN diodes. The antenna has a compact size of 0.47 λ1 × 0.27 λ1. The simulated and measured results indicate that the antenna can operate at a UWB mode, two single band-notch modes, and a dual band-notch mode. Moreover, stable radiation patterns are obtained.


2007 ◽  
Vol 21 (15) ◽  
pp. 2229-2239 ◽  
Author(s):  
G.-M. Zhang ◽  
J.-S. Hong ◽  
B.-Z. Wang ◽  
Q.-Y. Qin ◽  
B. He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document