scholarly journals A Double Combined Symmetric T-shaped Slots and Rotated L-shaped Strips Inspired UWB Antenna for C and X-band Elimination Filters

2020 ◽  
Vol 9 (1) ◽  
pp. 35-40
Author(s):  
M. Elhabchi ◽  
M. N. Srifi ◽  
R. Touahni

In this paper, we present a modified UWB antenna with hexagonal slotted ground plane inspired with a double combined symmetric T-shaped slots and dual rotated L-shaped strip for dual band notched characteristics. Initially, the operating frequency range is from 3GHz to 12 GHz. To eliminate the unwanted C-band (3.625-4.2GHz) and the entire uplink and downlink of X-band satellite communication systems (7.25 -8.39 GHz) frequency bands, we are investigating the conventional UWB patch antenna and loaded it with a mentioned strips and slots respectively. The performances of the antenna are optimized both by CST Microwave Studio and Ansoft HFSS. To further analyze the parametric effects of the slots and strips, the surface current distribution is presented and discussed. The antenna gain versus frequency gives an acceptable value except the notched band regions, these values are   reduced from its normal  to be  a negative in  the notched bands (3.625-4.2GHz) and (7.25 to 8.39 GHz).

A UWB antenna with reconfigurable notch band characteristics is proposed in this paper. The tunable notches are created using modified E shaped resonators that can be reconfigured to modified C shape; etched on either side of the microstrip feed line of a circular patch UWB antenna. The single and dual band rejection characteristics are created by using C and E shaped structure respectively. Reconfigurability is achieved by using two RF switches. By varying the ON and OFF states of the RF switches, two different notch bands are created; single notch band from 4 to 6.2 GHz and an additional notch band from 7.6 to 10 GHz are achieved. These wide bandwidth rejection performance leads to notching of WLAN, WiMAX, C-band frequencies and X band Satellite communication systems.


2019 ◽  
Vol 29 (02) ◽  
pp. 2050032
Author(s):  
Ahmed Zakaria Manouare ◽  
Saida Ibnyaich ◽  
Divitha Seetharamdoo ◽  
Abdelaziz EL Idrissi ◽  
Abdelilah Ghammaz

A novel compact coplanar waveguide (CPW)-fed planar monopole antenna with triple-band operation is presented for simultaneously satisfying the LTE 2600, WiMAX, WLAN and X-band applications. It is printed on a single-layered FR4 substrate. In this paper, the proposed antenna, which occupies a small volume of [Formula: see text][Formula: see text]mm3 including the ground plane, is simply composed of a CPW-fed monopole with U-, L- and T-shaped slots. By carefully selecting the lengths and positions of both L-shaped and U-shaped slots, a good dual notched band characteristic at center-rejected frequencies of 3.10[Formula: see text]GHz and 4.50[Formula: see text]GHz can be achieved, respectively. The T-shaped slot is etched on the radiating element to excite a resonant frequency in the 7[Formula: see text]GHz band. Then, to prove the validation of the typical design, a prototype model is fabricated and measured. The experimental result shows that the three frequency bands of 2.31–2.80[Formula: see text]GHz (490[Formula: see text]MHz), 3.37–3.84[Formula: see text]GHz (470[Formula: see text]MHz) and 5.04–7.94[Formula: see text]GHz (2900[Formula: see text]MHz) can successfully cover the desired bandwidths of LTE2600/WiMAX (3.50/5.50[Formula: see text]GHz)/WLAN (5.20/5.80[Formula: see text]GHz) and the X-band communication systems (7.1-GHz operation). The principal applications of the X-band are radar, aircraft, spacecraft and mobile or satellite communication system. Nearly omnidirectional and bidirectional radiation patterns of the triband antenna are observed in both H- and E-planes, respectively. In addition, a reasonable gain over the operating bands has been obtained. Indeed, the good agreements between simulation and measurement results have validated the proposed structure, confirming its potential for multiband wireless communication services.


2021 ◽  
Vol 72 (4) ◽  
pp. 268-272
Author(s):  
Susmita Bala ◽  
P. Soni Reddy ◽  
Sushanta Sarkar ◽  
Partha Pratim Sarkar

Abstract A wideband printed monopole antenna with two rejection bands is proposed in this article. The antenna provides a wideband from 5.4 GHz to 17.2 GHz with two rejection bands covering 6.9 to 7.4 GHz and 8.3 to 9.2 GHz with two peak notch frequencies of 7.2 GHz and 8.6 GHz respectively. Tested peak gain at two peak notch frequencies of 7.2 GHz and 8.6 GHz are 2.5 dBi and −1.5 dBi respectively. These two rejection bands are effectively used to avoid undesired intrusion from the C band and the X band. The lower rejection band has been realized by cutting an open ring circular slot on the metal patch whereas U like slot has been inserted on the ground plane just beneath the feed line to achieve the upper rejection band. Simulated and tested S 11 parameter, gain, radiation efficiency, E-H radiation patterns, and surface currents of the antenna are presented here. The antenna uses small dimensions and it is very simple to design. The proposed antenna confirms that it is useful for short-range and fast data communication systems.


Information ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 10 ◽  
Author(s):  
Jian Dong ◽  
Xin Zhuang ◽  
Guoqiang Hu

A triple band-notched ultrawide band (UWB) antenna is presented to avoid the interference of services working in the UWB band, such as WLAN, WiMAX and X-band satellite systems. The arc H-shaped slot on the radiating patch creates a low frequency notched band, while the other two band-notched bands are formed by cutting narrow slots on the ground plane. The presented antenna can operate on the ultrawide band efficiently and inhibit interference from three different kinds of narrow band communication systems. The simulation and measurement results show that the antenna has excellent band-notched function on the rejectband and almost omnidirectional radiation pattern on the passband.


2014 ◽  
Vol 538 ◽  
pp. 189-192
Author(s):  
Li Li ◽  
Zhang Zhuo Zhao ◽  
Xiao Li Yin

A novel printed microstrip-fed monopole antenna with a dual band notched characteristic has been designed and analyzed. The antenna has a rather compact structure with total size of 18×12×1.6mm3. Band notched has been created by inserting slot on the radiating patch and on the microstrip. Wide impendence bandwidth is produced by modify the ground plane. Good radiation performance is achieved in the frequency band of 3 to over 13 GHz with dual band notched of 3.7-4.2 and 7.0-8.0 GHz.


2017 ◽  
Vol 6 (4) ◽  
pp. 36-41 ◽  
Author(s):  
H. S. Mewara ◽  
D. Jhanwar ◽  
M. M. Sharma ◽  
J. K. Deegwal

A novel hammer-shaped UWB printed antenna with triple notched stop bands is presented and fabricated on FR-4 substrate with size of 40×40×1.6 mm3. The proposed antenna is composed of hammer-shaped patch with C-shaped slot, U-shaped slot on feed line, and inverted stepped notch and bevel edges with pair of L-shaped slots in partial ground plane. The fabricated antenna is tested and obtained impedance bandwidth 2.89 ̶ 11.6 GHz with three notched stop bands 3.15 ̶ 3.7 GHz, 5.45 ̶ 6.8 GHz, and 7.5 ̶  8.8 GHz, for radiolocation system (RLS), wireless local area networks (WLAN), and X-band satellite communication system (XSCS) bands, respectively. Moreover, the antenna result shows omnidirectional radiation pattern, average gain of 3.10 dBi over the whole UWB band except at the notched frequency bands.


Author(s):  
Mohssine El Ouahabi ◽  
Aziz Dkiouak ◽  
Alia Zakriti ◽  
Mohamed Essaaidi ◽  
Hanae Elftouh

<span lang="EN-US">A compact design of ultra-wideband (UWB) antenna with dual band-notched characteristics based on split-ring resonators (SRR) are investigated in this paper. The wider impedance bandwidth (from 2.73 to 11.34 GHz) is obtained by using two symmetrical slits in the radiating patch and another slit in the partial ground plane. The dual band-notch rejection at WLAN and X-band downlink satellite communication system are obtained by inserting a modified U-strip on the radiating patch at 5.5 GHz and embedding a pair of rectangular SRRs on both sides of the microstrip feed line at 7.5 GHz, respectively. The proposed antenna is simulated and tested using CST MWS high frequency simulator and exhibits the advantages of compact size, simple design and each notched frequency band can be controlled independently by using the SRR geometrical parameters. Therefore, the parametric study is carried out to understand the mutual coupling between the dual band-notched elements. To validate simulation results of our design, a prototype is fabricated and good agreement is achieved between measurement and simulation. Furthermore, a radiation patterns, satisfactory gain, current distribution and VSWR result at the notched frequencies make the proposed antenna a suitable candidate for practical UWB applications.</span>


2017 ◽  
Vol 6 (2) ◽  
pp. 53 ◽  
Author(s):  
E. K. I. Hamad ◽  
N. Mahmoud

Compact microstrip-fed printed monopole antenna with triple band-notched characteristics is suggested for ultra-wideband (UWB) applications. The antenna is constructed of a conventional rectangular microstrip patch antenna with partial ground plane and T-shaped strip employed in the ground plane as well as an inverted Ω- and L-shaped slots incorporated within the radiated element. The notched functions are created by the inverted Ω- and L-shaped slots, which are realized for WiMAX (from 2.69 to 4.5 GHz) and WLAN (from 5.49 to 6.37 GHz). The T-shaped parasitic strip generates the third notch for the X-band uplink satellite communication (from 8.15 to 9.61 GHz). The measured operating -10 dB bandwidth of the proposed antenna extends from 2.39 to more than 18 GHz except at the notched bands. The prototype antenna has a total area of 20×20×1.6 mm3. Electromagnetic (EM) simulations are carried out using 3D full-wave FEM-based simulator. EM simulation results are in good agreement with measurement results. The radiation pattern of the proposed antenna is nearly Omni-directional over the whole targeted band.


Author(s):  
Anirban Karmakar

In this chapter, a compact dual band notched Ultrawideband (UWB) antenna with fractal shaped Hilbert curve slots (HCS) is presented. The antenna covers the frequency band from 2.5 GHz to 12 GHz for VSWR=2 and also shows stable radiation patterns throughout the operating frequency band. By introducing Hilbert Curve fractal Slots (HCS) in the antenna, band notch characteristics have been achieved. The HCS renders the capability to reject 5.15-5.825 GHz band assigned for IEEE 802.11a and HYPERLAN/2 and also 7.9-8.4 GHz band assigned for X-Band uplink satellite communication systems where the gain is suppressed very well in the desired WLAN and X-Band. The antenna gain varies from 3dBi to 5dBi over the operating band. Novelty of this design lies in achieving miniature notch structure which has higher degree of freedom for adjusting notch parameters and unsusceptible to coupling with other notches. The antenna can be used for various mobile communication services such as DCS, IMT-2000, UMTS, DMB and UWB.


2017 ◽  
Vol 9 (8) ◽  
pp. 1725-1733 ◽  
Author(s):  
Manish Sharma ◽  
Yogendra Kumar Awasthi ◽  
Himanshu Singh

In this paper, a vase-shaped monopole antenna is presented for dual band notch (WiMAX IEEE802.16 3.30–3.80 GHz with C-band 3.80–4.20 GHz and WLAN IEEE802.11a/h/j/n 5.15–5.35 GHz, 5.25–5.35 GHz, 5.47–5.725 GHz, 5.725–5.825 GHz) UWB and other wireless services (close range radar: 8–12 GHz in X-band & satellite communication: 12–18 GHz in Ku-band). Measured VSWR of proposed antenna shows a high band-rejection for WiMAX along with C-band with VSWR = 25.33 at 3.77 GHz and WLAN with VSWR = 6.0 at 5.64 GHz is achieved by cutting two C-shaped slots on the radiating patch. Designed antenna covers a wide usable fractional bandwidth 160% (2.58–20.39 GHz). Furthermore, the measured gain of antenna is relatively stable across the impedance bandwidth except band-notched. In addition, antenna offers omni-directional pattern, reasonably small 20 × 20 × 0.787 mm3and easy to construct structure.


Sign in / Sign up

Export Citation Format

Share Document