Solving Bottleneck Problem by Transmission Power Control under Various Compression Assumptions for Wireless Sensor Networks

2014 ◽  
Vol 548-549 ◽  
pp. 1465-1470
Author(s):  
Rei Heng Cheng ◽  
Chi Ming Huang

In a wireless sensor network, sensor nodes located near the sink will have to bear more communication responsibilities in forwarding the data generated by the nodes located far from the sink. The nodes that are away from the sink communicate with the sink via the nodes that are nearby the sink. Thus the nodes nearby the sink will run out of battery power very soon and create bottleneck for communication. Some researches tried to balance the loading of sensors by adjusting the power range of sensors. However, simply reducing the power range does not always reduce the loading of sensors in the bottleneck zone. In this paper, both of the impacts of the transmission power range and compression gain on energy consumption of a wireless network are analyzed. Some simulation results are given to show the correctness of analysis results.

2019 ◽  
Vol 29 (09) ◽  
pp. 2050141 ◽  
Author(s):  
Muhammed Enes Bayrakdar

In this paper, a monitoring technique based on the wireless sensor network is investigated. The sensor nodes used for monitoring are developed in a simulation environment. Accordingly, the structure and workflow of wireless sensor network nodes are designed. Time-division multiple access (TDMA) protocol has been chosen as the medium access technique to ensure that the designed technique operates in an energy-efficient manner and packet collisions are not experienced. Fading channels, i.e., no interference, Ricean and Rayleigh, are taken into consideration. Energy consumption is decreased with the help of ad-hoc communication of sensor nodes. Throughput performance for different wireless fading channels and energy consumption are evaluated. The simulation results show that the sensor network can quickly collect medium information and transmit data to the processing center in real time. Besides, the proposed technique suggests the usefulness of wireless sensor networks in the terrestrial areas.


2020 ◽  
Vol 12 (1) ◽  
pp. 205-224
Author(s):  
Anshu Kumar Dwivedi DUBEY

Purpose ”“ In the recent scenario, there are various issues related to wireless sensor networks such as clustering, routing, packet loss, network strength. The core functionality of primarily wireless sensor networks is sensor nodes that are randomly scattered over a specific area. The sensor senses the data and sends it to the base station. Energy consumption is an important issue in wireless sensor networks. Clustering and cluster head selection is an important method used to extend the lifetime of wireless sensor networks. The main goal of this research article is to reduce energy consumption using a clustering process such as CH determination, cluster formation, and data dissemination.   Methodology/approach/design ”“ The simulation in this paper was finished utilizing MATLAB programming methodology and the proposed technique is contrasted with the LEACH and MOD-LEACH protocols.   Findings ”“ The simulation results of this research show that the energy consumption and dead node ratio are improved of wireless sensor networks as compared to the LEACH and MOD-LEACH algorithms.   Originality/value ”“ In the wireless sensor network there are various constraints energy is one of them. In order to solve this problem use CH selection algorithms to reduce energy consumption and consequently increase network lifetime.


Author(s):  
Sara Hebal ◽  
Lemia Louail ◽  
Saad Harous

Protocols for wireless sensor networks are generally designed following the layered protocol stack where layers are independent. Uncorrelated decisions coming from different layers may affect certain metrics such as the latency of communications, the energy consumption, etc. Cross-layer approaches overcome this problem by exploiting the dependencies between the layers. In this article, the authors propose latency and energy mac-aware routing for wireless sensor networks (LEMAR-WSN), a new cross-layer routing approach using information of the TDMA schedule and exploiting the information of the energy consumed by each node in order to optimize the latency of communications and the energy consumption when relaying information to the sink in a wireless sensor network. Simulation results show that the proposed approach improves the average latency of communications up to 20% and the average.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Siti Ummi Masruroh, M.Sc. , Feri Fahrianto, M.Sc

The function of clustering protocols to minimize the energy consumption of each node, and reduce number of transmission in wireless sensor network. However, most existing clustering protocols consume large amounts of energy, incurred by cluster formation overhead and fixed-level clustering, particularly when sensor nodes are densely deployed in wireless sensor networks. In this paper, we propose Pegasis Routing based on Ring Model, which is energy consumption in the system and prolong the network lifetime, with multiple clustes will decrease the network latency. Keywords: Wireless sensor networks (WSN), PEGASIS, lifetime


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Michele Chincoli ◽  
Aly Aamer Syed ◽  
Georgios Exarchakos ◽  
Antonio Liotta

Adaptive transmission power control schemes have been introduced in wireless sensor networks to adjust energy consumption under different network conditions. This is a crucial goal, given the constraints under which sensor communications operate. Power reduction may however have counterproductive effects to network performance. Yet, indiscriminate power boosting may detrimentally affect interference. We are interested in understanding the conditions under which coordinated power reduction may lead to better spectrum efficiency and interference mitigation and, thus, have beneficial effects on network performance. Through simulations, we analyze the performance of sensor nodes in an environment with variable interference. Then we study the relation between transmission power and communication efficiency, particularly in the context of Adaptive and Robust Topology (ART) control, showing how appropriate power reduction can benefit both energy and spectrum efficiency. We also identify critical limitations in ART, discussing the potential of more cooperative power control approaches.


Author(s):  
Sahabul Alam ◽  
Debashis De

Now a days Wireless Sensor Networks (WSNs) have grown rapidly due to advancement of information technology. Sensor nodes are deployed over the field for collecting useful information. Sensor nodes have limited battery power and bandwidth. As a result it is critical for planning energy efficient protocols in WSNs. It is necessary to transfer and gather information in optimized way to reduce the energy dissipation. Ant Colony Optimization (ACO) is already proved to be better technique to optimize the network routing protocols in WSNs. Ant based routing can have significant role to extend the network life time and balance energy consumption in WSNs. In this chapter wireless sensor network architecture, routing factors of wireless sensor networks, computational intelligence technique, ant colony algorithm and ant colony based balanced energy consumption approaches in wireless sensor network have been discussed.


2013 ◽  
Vol 479-480 ◽  
pp. 788-792
Author(s):  
Young Long Chen ◽  
Yi Nung Shih ◽  
Siao Jhu Shih

In this paper, we aim to improve theenergy efficiency via a Clustering Algorithm based on Social Insect Colonies (CASIC), inorder to extend the lifetime of Wireless Sensor Networks(WSNs). We propose a CASIC with Sub-clusters (CASIC-S) for reducing the energyconsumption of sensor nodes within the concentric layer during transmission orreception. We also investigate the CASIC-S scheme with different numbers ofnodes in our simulations. The simulation results show that our proposed scheme performs better in terms of first node death and the number of nodes alive.


Author(s):  
Biresh Kumar ◽  
Pallab Banerjee ◽  
Amarnath Singh ◽  
Anurag Kumar ◽  
Avinash Kumar

The wireless sensor networks have become a very hot topic of research in the recent years because of their wide range of applications such as industrial and agricultural monitoring, military surveillance, smart homes etc. These sensors can also be used in locations that are potentially hazardous to the human beings or are just out of our reach at this moment of time. A wireless sensor network is collection of large number of individual sensor nodes. A sensor usually comprises of components for sensing the environment, processing, communicating and a power supply. The major limiting factor of the wireless sensor networks is the limited amount of power that each of the sensors can carry and also the energy in these sensors cannot be replenished easily. So, the major design challenge in a wireless sensor network has always been about reduction in the consumption of energy by the sensors. Clustering is one of the popular methods to reduce energy consumption in wireless sensor networks. Here, we propose a scheme to decrease the energy consumption and prolong the lifetime of wireless sensor network. The main idea behind the scheme is that we try to minimise the communication distance between the individual sensor nodes using the clustering technique.


Author(s):  
Chinedu Duru ◽  
Neco Ventura ◽  
Mqhele Dlodlo

Background: Wireless Sensor Networks (WSNs) have been researched to be one of the ground-breaking technologies for the remote monitoring of pipeline infrastructure of the Oil and Gas industry. Research have also shown that the preferred deployment approach of the sensor network on pipeline structures follows a linear array of nodes, placed a distance apart from each other across the infrastructure length. The linear array topology of the sensor nodes gives rise to the name Linear Wireless Sensor Networks (LWSNs) which over the years have seen themselves being applied to pipelines for effective remote monitoring and surveillance. This paper aims to investigate the energy consumption issue associated with LWSNs deployed in cluster-based fashion along a pipeline infrastructure. Methods: Through quantitative analysis, the study attempts to approach the investigation conceptually focusing on mathematical analysis of proposed models to bring about conjectures on energy consumption performance. Results: From the derived analysis, results have shown that energy consumption is diminished to a minimum if there is a sink for every placed sensor node in the LWSN. To be precise, the analysis conceptually demonstrate that groups containing small number of nodes with a corresponding sink node is the approach to follow when pursuing a cluster-based LWSN for pipeline monitoring applications. Conclusion: From the results, it is discovered that energy consumption of a deployed LWSN can be decreased by creating groups out of the total deployed nodes with a sink servicing each group. In essence, the smaller number of nodes each group contains with a corresponding sink, the less energy consumed in total for the entire LWSN. This therefore means that a sink for every individual node will attribute to minimum energy consumption for every non-sink node. From the study, it can be concurred that energy consumption of a LWSN is inversely proportional to the number of sinks deployed and hence the number of groups created.


Author(s):  
Rekha Goyat ◽  
Mritunjay Kumar Rai ◽  
Gulshan Kumar ◽  
Hye-Jin Kim ◽  
Se-Jung Lim

Background: Wireless Sensor Networks (WSNs) is considered one of the key research area in the recent. Various applications of WSNs need geographic location of the sensor nodes. Objective: Localization in WSNs plays an important role because without knowledge of sensor nodes location the information is useless. Finding the accurate location is very crucial in Wireless Sensor Networks. The efficiency of any localization approach is decided on the basis of accuracy and localization error. In range-free localization approaches, the location of unknown nodes are computed by collecting the information such as minimum hop count, hop size information from neighbors nodes. Methods: Although various studied have been done for computing the location of nodes but still, it is an enduring research area. To mitigate the problems of existing algorithms, a range-free Improved Weighted Novel DV-Hop localization algorithm is proposed. Main motive of the proposed study is to reduced localization error with least energy consumption. Firstly, the location information of anchor nodes is broadcasted upto M hop to decrease the energy consumption. Further, a weight factor and correction factor are introduced which refine the hop size of anchor nodes. Results: The refined hop size is further utilized for localization to reduces localization error significantly. The simulation results of the proposed algorithm are compared with other existing algorithms for evaluating the effectiveness and the performance. The simulated results are evaluated in terms localization error and computational cost by considering different parameters such as node density, percentage of anchor nodes, transmission range, effect of sensing field and effect of M on localization error. Further statistical analysis is performed on simulated results to prove the validation of proposed algorithm. A paired T-test is applied on localization error and localization time. The results of T-test depicts that the proposed algorithm significantly improves the localization accuracy with least energy consumption as compared to other existing algorithms like DV-Hop, IWCDV-Hop, and IDV-Hop. Conclusion: From the simulated results, it is concluded that the proposed algorithm offers 36% accurate localization than traditional DV-Hop and 21 % than IDV-Hop and 13% than IWCDV-Hop.


Sign in / Sign up

Export Citation Format

Share Document