Balanced Energy Consumption Approach Based on Ant Colony in Wireless Sensor Networks

Author(s):  
Sahabul Alam ◽  
Debashis De

Now a days Wireless Sensor Networks (WSNs) have grown rapidly due to advancement of information technology. Sensor nodes are deployed over the field for collecting useful information. Sensor nodes have limited battery power and bandwidth. As a result it is critical for planning energy efficient protocols in WSNs. It is necessary to transfer and gather information in optimized way to reduce the energy dissipation. Ant Colony Optimization (ACO) is already proved to be better technique to optimize the network routing protocols in WSNs. Ant based routing can have significant role to extend the network life time and balance energy consumption in WSNs. In this chapter wireless sensor network architecture, routing factors of wireless sensor networks, computational intelligence technique, ant colony algorithm and ant colony based balanced energy consumption approaches in wireless sensor network have been discussed.

2019 ◽  
Vol 29 (09) ◽  
pp. 2050141 ◽  
Author(s):  
Muhammed Enes Bayrakdar

In this paper, a monitoring technique based on the wireless sensor network is investigated. The sensor nodes used for monitoring are developed in a simulation environment. Accordingly, the structure and workflow of wireless sensor network nodes are designed. Time-division multiple access (TDMA) protocol has been chosen as the medium access technique to ensure that the designed technique operates in an energy-efficient manner and packet collisions are not experienced. Fading channels, i.e., no interference, Ricean and Rayleigh, are taken into consideration. Energy consumption is decreased with the help of ad-hoc communication of sensor nodes. Throughput performance for different wireless fading channels and energy consumption are evaluated. The simulation results show that the sensor network can quickly collect medium information and transmit data to the processing center in real time. Besides, the proposed technique suggests the usefulness of wireless sensor networks in the terrestrial areas.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xueli Wang

As one of the three pillars of information technology, wireless sensor networks (WSNs) have been widely used in environmental detection, healthcare, military surveillance, industrial data sampling, and many other fields due to their unparalleled advantages in deployment cost, network power consumption, and versatility. The advent of the 5G standard and the era of Industry 4.0 have brought new opportunities for the development of wireless sensor networks. However, due to the limited power capacity of the sensor nodes themselves, the harsh deployment environment will bring a great difficulty to the energy replenishment of the sensor nodes, so the energy limitation problem has become a major factor limiting its further development; how to improve the energy utilization efficiency of WSNs has become an urgent problem in the scientific and industrial communities. Based on this, this paper researches the routing technology of wireless sensor networks, from the perspective of improving network security, and reducing network energy consumption, based on the study of ant colony optimization algorithm, further studies the node trust evaluation mechanism, and carries out the following research work: (1) study the energy consumption model of wireless sensor networks; (2) basic ant colony algorithm improvement; (3) multiobjective ant colony algorithm based on wireless sensor routing algorithm optimization. In this study, the NS2 network simulator is used as a simulation tool to verify the performance of the research algorithm. Compared with existing routing algorithms, the simulation results show that the multiobjective ant colony optimization algorithm has better performance in evaluation indexes such as life cycle, node energy consumption, node survival time, and stability compared with the traditional algorithm and the dual cluster head ant colony optimization algorithm.


2020 ◽  
Vol 12 (1) ◽  
pp. 205-224
Author(s):  
Anshu Kumar Dwivedi DUBEY

Purpose ”“ In the recent scenario, there are various issues related to wireless sensor networks such as clustering, routing, packet loss, network strength. The core functionality of primarily wireless sensor networks is sensor nodes that are randomly scattered over a specific area. The sensor senses the data and sends it to the base station. Energy consumption is an important issue in wireless sensor networks. Clustering and cluster head selection is an important method used to extend the lifetime of wireless sensor networks. The main goal of this research article is to reduce energy consumption using a clustering process such as CH determination, cluster formation, and data dissemination.   Methodology/approach/design ”“ The simulation in this paper was finished utilizing MATLAB programming methodology and the proposed technique is contrasted with the LEACH and MOD-LEACH protocols.   Findings ”“ The simulation results of this research show that the energy consumption and dead node ratio are improved of wireless sensor networks as compared to the LEACH and MOD-LEACH algorithms.   Originality/value ”“ In the wireless sensor network there are various constraints energy is one of them. In order to solve this problem use CH selection algorithms to reduce energy consumption and consequently increase network lifetime.


2017 ◽  
Vol 13 (07) ◽  
pp. 4
Author(s):  
Xiaobin Shu ◽  
Caihong Liu ◽  
Chunxia Jiao ◽  
Qin Wang ◽  
Hongfeng Yin

<span style="font-family: 'Times New Roman',serif; font-size: 10.5pt; mso-ansi-language: EN-US; mso-fareast-font-family: 宋体; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA;" lang="EN-US">To d</span><span style="font-family: 'Times New Roman',serif; font-size: 10.5pt; mso-ansi-language: EN-US; mso-fareast-font-family: 宋体; mso-fareast-language: DE; mso-bidi-language: AR-SA;" lang="EN-US">esign an effective secure routing of trusted nodes in wireless sensor networks</span><span style="font-family: 'Times New Roman',serif; font-size: 10.5pt; mso-ansi-language: EN-US; mso-fareast-font-family: 宋体; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA;" lang="EN-US">, </span><span style="font-family: 'Times New Roman',serif; font-size: 10.5pt; mso-ansi-language: EN-US; mso-fareast-font-family: 宋体; mso-fareast-language: DE; mso-bidi-language: AR-SA;" lang="EN-US">quantum ant colony algorithm is applied to the design of large-scale wireless sensor network routing. The trustworthy network is used as the pheromone distribution strategy.</span><span style="font-family: 'Times New Roman',serif; font-size: 10.5pt; mso-ansi-language: EN-US; mso-fareast-font-family: 宋体; mso-fareast-language: DE; mso-bidi-language: AR-SA;" lang="EN-US">Then</span><span style="font-family: 'Times New Roman',serif; font-size: 10.5pt; mso-ansi-language: EN-US; mso-fareast-font-family: 宋体; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA;" lang="EN-US">,</span><span style="font-family: 'Times New Roman',serif; font-size: 10.5pt; mso-ansi-language: EN-US; mso-fareast-font-family: 宋体; mso-fareast-language: DE; mso-bidi-language: AR-SA;" lang="EN-US"> the pheromone is encoded by the quantum bit</span><span style="font-family: 'Times New Roman',serif; font-size: 10.5pt; mso-ansi-language: EN-US; mso-fareast-font-family: 宋体; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA;" lang="EN-US">. The pheromone is updated by the quantum revolving door, and the energy consumption prediction is carried out to select the path. Finally, the trusted security routing algorithm of the wireless sensor network based on the global energy balance is realized. </span><span style="font-family: 'Times New Roman',serif; font-size: 10.5pt; mso-ansi-language: EN-US; mso-fareast-font-family: 宋体; mso-fareast-language: DE; mso-bidi-language: AR-SA;" lang="EN-US">The quantum ant colony algorithm is superior to the traditional ant colony algorithm in algorithm convergence speed and global optimization. It can balance the energy consumption of the network node and can effectively resist the attacks such as Wormholes.</span><span style="font-family: 'Times New Roman',serif; font-size: 10.5pt; mso-ansi-language: EN-US; mso-fareast-font-family: 宋体; mso-fareast-language: DE; mso-bidi-language: AR-SA;" lang="EN-US">It is very promising to apply the quantum ant colony algorithm to the routing algorithm of large scale wireless sensor networks.</span>


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Siti Ummi Masruroh, M.Sc. , Feri Fahrianto, M.Sc

The function of clustering protocols to minimize the energy consumption of each node, and reduce number of transmission in wireless sensor network. However, most existing clustering protocols consume large amounts of energy, incurred by cluster formation overhead and fixed-level clustering, particularly when sensor nodes are densely deployed in wireless sensor networks. In this paper, we propose Pegasis Routing based on Ring Model, which is energy consumption in the system and prolong the network lifetime, with multiple clustes will decrease the network latency. Keywords: Wireless sensor networks (WSN), PEGASIS, lifetime


Author(s):  
Biresh Kumar ◽  
Pallab Banerjee ◽  
Amarnath Singh ◽  
Anurag Kumar ◽  
Avinash Kumar

The wireless sensor networks have become a very hot topic of research in the recent years because of their wide range of applications such as industrial and agricultural monitoring, military surveillance, smart homes etc. These sensors can also be used in locations that are potentially hazardous to the human beings or are just out of our reach at this moment of time. A wireless sensor network is collection of large number of individual sensor nodes. A sensor usually comprises of components for sensing the environment, processing, communicating and a power supply. The major limiting factor of the wireless sensor networks is the limited amount of power that each of the sensors can carry and also the energy in these sensors cannot be replenished easily. So, the major design challenge in a wireless sensor network has always been about reduction in the consumption of energy by the sensors. Clustering is one of the popular methods to reduce energy consumption in wireless sensor networks. Here, we propose a scheme to decrease the energy consumption and prolong the lifetime of wireless sensor network. The main idea behind the scheme is that we try to minimise the communication distance between the individual sensor nodes using the clustering technique.


Author(s):  
Wajeeha Aslam ◽  
Muazzam A. Khan ◽  
M. Usman Akram ◽  
Nazar Abbas Saqib ◽  
Seungmin Rho

Wireless sensor networks are greatly habituated in widespread applications but still yet step behind human intelligence and vision. The main reason is constraints of processing, energy consumptions and communication of image data over the sensor nodes. Wireless sensor network is a cooperative network of nodes called motes. Image compression and transmission over a wide ranged sensor network is an emerging challenge with respect to battery, life time constraints. It reduces communication latency and makes sensor network efficient with respect to energy consumption. In this paper we will have an analysis and comparative look on different image compression techniques in order to reduce computational load, memory requirements and enhance coding speed and image quality. Along with compression, different transmission methods will be discussed and analyzed with respect to energy consumption for better performance in wireless sensor networks.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4281
Author(s):  
Ngoc-Thanh Dinh ◽  
Younghan Kim

Wireless sensor network (WSN) studies have been carried out for multiple years. At this stage, many real WSNs have been deployed. Therefore, configuration and updating are critical issues. In this paper, we discuss the issues of configuring and updating a wireless sensor network (WSN). Due to a large number of sensor nodes, in addition to the limited resources of each node, manual configuring turns out to be impossible. Therefore, various auto-configuration approaches have been proposed to address the above challenges. In this survey, we present a comprehensive review of auto-configuration mechanisms with the taxonomy of classifications of the existing studies. For each category, we discuss and compare the advantages and disadvantages of related schemes. Lastly, future works are discussed for the remaining issues in this topic.


Author(s):  
Saloni Dhiman ◽  
Deepti Kakkar ◽  
Gurjot Kaur

Wireless sensor networks (WSNs) consist of several sensor nodes (SNs) that are powered by battery, so their lifetime is limited, which ultimately affects the lifespan and hence performance of the overall networks. Till now many techniques have been developed to solve this problem of WSN. Clustering is among the effective technique used for increasing the network lifespan. In this chapter, analysis of multi-hop routing protocol based on grid clustering with different selection criteria is presented. For analysis, the network is divided into equal-sized grids where each grid corresponds to a cluster and is assigned with a grid head (GH) responsible for collecting data from each SN belonging to respective grid and transferring it to the base station (BS) using multi-hop routing. The performance of the network has been analyzed for different position of BS, different number of grids, and different number of SNs.


2013 ◽  
Vol 397-400 ◽  
pp. 1117-1120
Author(s):  
Hai Yang

As a new method of obtaining information and disposal pattern, wireless sensor network has been a hot issue nowadays. In this paper the network model and energy consumption model of wireless sensor network are introduced firstly. The improved inspiring factor takes energy into account. Then a parallel ant colony algorithm based on award-punishment mechanism is proposed. The experimental results show that the energy consumption and time delay of the improved algorithm are superior to energy efficient ant based routing and basic ant colony algorithm.


Sign in / Sign up

Export Citation Format

Share Document