Effects of Al-5Ti-B-2RE on the Microstructures and Mechanical Properties of Al-10Mg Alloy

2011 ◽  
Vol 55-57 ◽  
pp. 828-831 ◽  
Author(s):  
J.Q. Li ◽  
J.L. Chen ◽  
Xianyi Li ◽  
Xiao Li Ma

This paper reported the effects of Al-5Ti-B-2RE on the microstructures and mechanical properties of an Al-10Mg alloys. It has been shown that the addition of 6wt.% Al-5Ti-B-2RE alloy can decrease the average grain sizes and increase the mechanical properties of the Al-10Mg alloy. Grain refinement mechanism is due to TiAl3andTiB2particles formation nucleation of aluminum,rare earth elements enhancing the kinetics of α-Al nucleation and inducing low growing speed of crystals. And the grain refinement strengthening and dispersion strengthening lead to improve the mechanical properties.

2021 ◽  
Vol 21 (9) ◽  
pp. 4877-4880
Author(s):  
Gyeong Woo Kim ◽  
Se Min Jeong

This study aimed to evaluate the soundness of solid-state welded steels. STS 430F alloy with a rod type was selected as experimental material, and the friction welding was conducted at a rotation speed of 2,000 RPM and upset length of 3 mm. The application of friction welding on STS 430F rods led to significant grain refinement in the welded zone (1.3 µm) compared to that observed in the base material (16.8 µm). The refined grains in the welds contributed to the development of the mechanical properties. In particular, the Vickers microhardness was increased by approximately 25% compared to the base material, and the fracture at the tensile specimen of the welds occurred at the base material zone and not in the welded zone, which suggests a soundly welded state on the STS 430F rods.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Shih-Ying Chang ◽  
An-Bang Wu ◽  
Jun-Yen Lee ◽  
Yan-Hua Huang

Abstract The microstructure, thermal behavior, and mechanical properties of Sn-xZn-0.1RE (x = 5, 10, 20, and 30 wt%) alloys containing mixed trace rare earth elements were investigated in this study. The results showed that the alloys had the same solidus temperature of about 199 °C. Zinc content higher than 10% enhanced slightly the eutectic temperatures and enlarged the eutectic temperature range of the alloys. The microstructures of most of the alloys exhibited Zn-rich coarse clusters, but not for Sn-5Zn-0.1RE. The tensile strength of the alloys increased with increasing zinc concentration.


2013 ◽  
Vol 377 ◽  
pp. 128-132
Author(s):  
Zhuang Li ◽  
Di Wu ◽  
Wei Lv ◽  
Shao Pu Kang ◽  
Zhen Zheng

Rare earth elements (REE) are harmless for human health. REE addition contributes to the improvement of the machinability of the steels. In the present paper, machining characteristics of austenitic stainless steels without lead addition were investigated by adding free-machining elements, such as sulfur, REE and bismuth. The results have shown that large numbers of rounded, globular shaped inclusions were obtained for both steels. The machinability of steel B is better than that of steel A, and the cutting forces of steel B are lower than those of steel A at various cutting speeds. Lead can be substituted by REE and bismuth in free machinable austenitic stainless steels. REE significantly affects machining characteristics of austenitic stainless steels without lead addition. The mechanical properties of both steels were similar, and their fracture exhibited ductile characteristics. Satisfactory machinability and mechanical properties can be obtained for both steels.


2010 ◽  
Vol 34-35 ◽  
pp. 1651-1655
Author(s):  
An Ru Wu ◽  
Li Jun Dong ◽  
Wei Guo Gao ◽  
Xiang Ling Zhou

The microstructure and mechanical properties of Mg-6.0%Zn-0.5%Zr (ZK60) and ZK60-2.0%Nd-1.0%Y alloys after extrusion, rolling and then T5 and T6 heat-treatment were investigated. The hardness and tensile strength at T5 and T6 condition were tested. The results show that the mechanical properties of ZK60--2.0%Nd-1.0%Y alloy are superior to that of ZK60 alloy. The hardness of the investigated alloy at T5 condition is higher than at T6. The strengthening of ZK60-2.0%Nd-1.0%Y alloy originates from the interaction of phase and dislocations. The precipitation order of ZK60-2.0%Nd-1.0%Y alloy is GP zone . The magnesium alloy contains rare earth elements with good casting performance, great potential for plastic deformation, high strength, excellent mechanical properties and many other advantages. The magnesium alloy oversaturation solid solution's decomposition process conforms to time the common alloy oversaturation solid solution decomposition order rule, often namely before separating out the equilibrium phase presents some transitional stage the structure, like the GP area, the transition are equal, but the different series magnesium alloy presents the different characteristic, therefore uses the heat treatment method also has big difference [1-5]. In this paper, we will analysis mechanical properties of aging process of testing and microstructure of Mg-6.0% Zn-0.5% Zr-2.0% Nd-1.0% Y alloy , do Research about strengthen the effect of melting and from the product of the relationship on different alloy aging process, and analysis contribution of rare earth elements Nd, Y to alloy strengthen.


Sign in / Sign up

Export Citation Format

Share Document