Characterisation of the Shear Stud-Concrete Connection Using Finite Element Analysis

2014 ◽  
Vol 553 ◽  
pp. 570-575
Author(s):  
Daniel John Lowe ◽  
Raj Das ◽  
George Charles Clifton ◽  
Namasivayam Navaranjan

The degradation of the connection between shear studs and concrete is a complicated phenomenon that depends on many factors, including; interfacial properties, concrete crushing and steel yielding. The purpose of this paper is to outline the scope and methodology of the research project being undertaken to characterise the shear stud-concrete interface of a composite beam using finite element analysis. A mesoscopic model will be created for a section of the interface. With the use of a multi-scale approach, the mesoscopic model will be incorporated into a global model. The influence of steel roughness and mechanical properties will be included. Concrete is to be modelled as heterogeneous, comprising discrete regions of aggregate, cement matrix, and an interfacial transition zone (ITZ). The effect of the ITZ will be taken into account using a zero thickness cohesive element. Experimental testing using a push-up rig is to be conducted to verify the numerical models. The ultimate aim is to develop a simplified representation of the shear stud-concrete interface that can be used in a large scale finite element model of a composite member to correctly capture the behaviour of the shear stud-concrete interface in the elastic and inelastic state.

2012 ◽  
Vol 591-593 ◽  
pp. 728-732
Author(s):  
Rong Zhang

This paper uses non-linear finite element method to structurally analyze top flanged joint system of a MW wind turbine, sets up a finite element model of top flanged joint system by applying finite element analysis software MSC.Marc/Mentat, makes an analysis on the stress distribution of key components of top flanged joint system under ultimate operating mode based on applying appropriate boundary condition and loads, and carries out security examination on top flange and joint bolt. Result shows that key components of the top flanged joint system can satisfy design requirements, and it has a guiding role for rational design and performance improvement of large scale wind turbine flange, which can be used in structural analysis of other flanged joint systems, and has certain practical value in the aspect of engineering.


Author(s):  
Václav Sebera ◽  
Milan Šimek

The objective of the paper is the parametrization and the finite element analysis of mechanical pro­per­ties of a through dovetail joint made with the use of a specific procedure by a 3-axis CNC machine. This corner joint was used for the simulation of the bending load of the joint in the angle plane – by compression, i.e. by pressing the joint together. The deformation fields, the stress distribution, the stiffness and the bending moment of the joints were evaluated. The finite element system ANSYS was used to create two parametric numerical models of the joint. The first one represents an ideal­ly stiff joint – both joint parts have been glued together. The second model includes the contact between the joined parts. This numerical model was used to monitor the response of the joint stiffness to the change of the static friction coefficient. The results of both models were compared both with each other and with similar analyses conducted within the research into ready-to-assemble furniture joints. The results can be employed in the designing of more complex furniture products with higher demands concerning stiffness characteristics, such as furniture for sitting. However, this assumption depends on the correction of the created parametric models by experimental testing.


2013 ◽  
Vol 712-715 ◽  
pp. 1080-1083
Author(s):  
Hu Qi Wang ◽  
Hai Zhao He ◽  
Hai Yan Lu ◽  
Rong Xing Huang

A large-scale forklift's wheel rim appeared cracking phenomenon in the course of use. This article summarized and analyzed force of the forklift's wheel rim according to the typical working conditions of forklift, and calculated the load of various working conditions. It provided the correct boundary conditions for the finite element analysis of the wheel rim [. After the analysis of wheel rim's three typical conditions, found the weak parts of the structure of the rim, and this part was consistent with the feedback part, so it proved correct of the finite element analysis model. Clever was used ribbed-plate and punching groove to strengthen the weak part of wheel rim and the finite element model was used to calculate and check the improved wheel rim again. The results showed that the improved wheel rim stress decreased quite, so the measure was correct.


2013 ◽  
Vol 753-755 ◽  
pp. 1196-1200
Author(s):  
Lu Yu Huang ◽  
Yang Gao ◽  
Xia Cao

Based on the construction features of the steel structures of a type of electrical dust precipitator, a finite element model is established with large-scale finite element analysis software ANSYS, and the structure stress and displacement of the model under all sorts of loads are analyzed with the frontal solution method. The results indicate that analysis is relatively accurate, the finite element model and the analysis method is appropriate. The result can be further used for optimization design of the electrical precipitator steel structures.


2021 ◽  
pp. 204141962199067
Author(s):  
Aaron Thomas Hill ◽  
Eric Williamson

The research presented in this manuscript focuses on the development of an LS-DYNA finite element model to predict the dynamic shear strength of short riveted lap-spliced specimens. Using data collected from experimental testing at the U.S. Army Engineer Research and Development Center (ERDC), a finite element model was developed to replicate the behavior of A502 Grade short riveted connections under quasi-static loading. Subsequent analyses used published Cowper-Symonds constitutive model coefficients to replicate the behavior of these connections under dynamic loading. Computed results were then compared with available test data from ERDC. Given the challenges involved in creating physical models with riveted connections and the abundance of historical bridges constructed with rivets, the developed finite element analysis engineering solution can serve as a critical tool for researchers interested in predicting the response of short riveted connections to dynamic loading and those interested in developing strategies to mitigate against this loading.


2012 ◽  
Vol 150 ◽  
pp. 165-169 ◽  
Author(s):  
Gang Zhang ◽  
Xue Zhang ◽  
De De Jiang ◽  
Ming Yan Li ◽  
Jian Zhang

According to the property of contact problem, the calculation formula of contact stress of cross-roller slewing bearing is derived under the action of eccentric axial load. The finite element model of slewing bearing is analyzed in ANSYS, and then the finite element analysis software is used to analyze the contact stress. In this way, the distribution condition of contact stress between roller and rings is obtained. By comparing the finite element analysis results with theoretical analysis results, the correctness of finite element analysis is certified, which provides a guide for the design and optimization of slewing bearing.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1152
Author(s):  
Rafał Nowak ◽  
Anna Olejnik ◽  
Hanna Gerber ◽  
Roman Frątczak ◽  
Ewa Zawiślak

The aim of this study was to compare the reduced stresses according to Huber’s hypothesis and the displacement pattern in the region of the facial skeleton using a tooth- or bone-borne appliance in surgically assisted rapid maxillary expansion (SARME). In the current literature, the lack of updated reports about biomechanical effects in bone-borne appliances used in SARME is noticeable. Finite element analysis (FEA) was used for this study. Six facial skeleton models were created, five with various variants of osteotomy and one without osteotomy. Two different appliances for maxillary expansion were used for each model. The three-dimensional (3D) model of the facial skeleton was created on the basis of spiral computed tomography (CT) scans of a 32-year-old patient with maxillary constriction. The finite element model was built using ANSYS 15.0 software, in which the computations were carried out. Stress distributions and displacement values along the 3D axes were found for each osteotomy variant with the expansion of the tooth- and the bone-borne devices at a level of 0.5 mm. The investigation showed that in the case of a full osteotomy of the maxilla, as described by Bell and Epker in 1976, the method of fixing the appliance for maxillary expansion had no impact on the distribution of the reduced stresses according to Huber’s hypothesis in the facial skeleton. In the case of the bone-borne appliance, the load on the teeth, which may lead to periodontal and orthodontic complications, was eliminated. In the case of a full osteotomy of the maxilla, displacements in the buccolingual direction for all the variables of the bone-borne appliance were slightly bigger than for the tooth-borne appliance.


2011 ◽  
Vol 346 ◽  
pp. 379-384
Author(s):  
Shu Bo Xu ◽  
Yang Xi ◽  
Cai Nian Jing ◽  
Ke Ke Sun

The use of finite element theory and modal analysis theory, the structure of the machine static and dynamic performance analysis and prediction using optimal design method for optimization, the new machine to improve job performance, improve processing accuracy, shorten the development cycle and enhance the competitiveness of products is very important. Selected for three-dimensional CAD modeling software-UG NX4.0 and finite element analysis software-ANSYS to set up the structure of the beam finite element model, and then post on the overall structure of the static and dynamic characteristic analysis, on the basis of optimized static and dynamic performance is more superior double wall structure of the beam. And by changing the wall thickness and the thickness of the inner wall, as well as the reinforcement plate thickness overall sensitivity analysis shows that changes in these three parameters on the dynamic characteristics of post impact. Application of topology optimization methods, determine the optimal structure of the beam ultimately.


Sign in / Sign up

Export Citation Format

Share Document