Virtual Reference Feedback Corrective Control Based on the Closed-Loop

2014 ◽  
Vol 568-570 ◽  
pp. 1135-1138 ◽  
Author(s):  
Hong Cheng Zhou ◽  
Zhi Peng Jiang

Firstly two controller using the virtual reference feedback control design, at the same time considering the expectation of a given model match the closed-loop transfer function and sensitivity function, which need to be in the two objective function increases the expression in a model of the sensitivity function matching. Finally the iteration algorithm of controller parameters are obtained by mathematical method. Also the asymptotic variance matrix can be applied to the control of virtual reference feedback correction virtual signal design and controller in the process of inspection.

2001 ◽  
Vol 123 (2) ◽  
pp. 279-283 ◽  
Author(s):  
Qian Chen ◽  
Yossi Chait ◽  
C. V. Hollot

Reset controllers consist of two parts—a linear compensator and a reset element. The linear compensator is designed, in the usual ways, to meet all closed-loop performance specifications while relaxing the overshoot constraint. Then, the reset element is chosen to meet this remaining step-response specification. In this paper, we consider the case when such linear compensation results in a second-order (loop) transfer function and where a first-order reset element (FORE) is employed. We analyze the closed-loop reset control system addressing performance issues such as stability, steady-state response, and transient performance.


2019 ◽  
Vol 292 ◽  
pp. 01018
Author(s):  
Murat Akın ◽  
Tankut Acarman

In this study, the discrete-time H∞ model matching problem with integral control by using 2 DOF static output feedback is presented. First, the motivation and the problem is stated. After presenting the notation, the two lemmas toward the discrete-time H∞ model matching problem with integral control are proven. The controller synthesis theorem and the controller design algorithm is elaborated in order to minimize the H∞ norm of the closed-loop transfer function and to maximize the closed-loop performance by introducing the model transfer matrix. In following, the discrete-time H∞ MMP via LMI approach is derived as the main result. The controller construction procedure is implemented by using a well-known toolbox to improve the usability of the presented results. Finally, some conclusions are given.


Author(s):  
Yangmin Xie ◽  
Andrew G. Alleyne ◽  
Ashley Greer ◽  
Dustin Deneault

This paper investigates fundamental performance limitations in the control of a combine harvester's header height control system. There are two primary subsystem characteristics that influence the achievable bandwidth by affecting the open loop transfer function. The first subsystem is the mechanical configuration of the combine and header while the second subsystem is the electrohydraulic actuation for the header. The mechanical combine + header subsystem results in an input–output representation that is underactuated and has a noncollocated sensor/actuator pair. The electrohydraulic subsystem introduces a significant time delay. In combination, they each reinforce the effect of the other thereby exacerbating the overall system limitation of the closed loop bandwidth. Experimental results are provided to validate the model and existence of the closed loop bandwidth limitations that stem from specific system design configurations.


Author(s):  
Dola Gobinda Padhan ◽  
Suresh Kumar Tummala

<p>A novel control structure for designing a PID load frequency controller for power systems is presented. The controller with a single tuning parameter is designed based on a desired closed-loop complementary sensitivity function and Pade approximation. Comparative analysis demonstrates that proposed PID controllers improves the settling time and reduces overshoot effectively against small step load disturbances. Also, the performance and robustness of the controllers have been analyzed and compared. Simulation results show significantly improved performances when compared with recent results.</p>


Author(s):  
Sabo Miya Hassan ◽  
Rosdiazli Ibrahim ◽  
Nordin Saad ◽  
Vijanth Sagayan Asirvadam ◽  
Kishore Bingi ◽  
...  

As control over wireless network in the industry is receives increasing attention, its application comes with challenges such as stochastic network delay. The PIDs are ill equipped to handle such challenges while the model based controllers are complex. A settlement between the two is the PPI controller. However, there is no certainty on its ability to preserve closed loop stability under such challenges. While classical robustness measures do not require extensive uncertainty modelling, they do not guarantee stability under simultaneous process and network delay variations. On the other hand, the model uncertainty measures tend to be conservative. Thus, this work uses extended complementary sensitivity function method which handles simultaneously those challenges. Simulation results shows that the PPI controller can guarantee stability even under model and delay uncertainties.


Sign in / Sign up

Export Citation Format

Share Document