Reliability Analysis of Offshore Structures with Consideration of Seasonal and Directional Effects

2014 ◽  
Vol 578-579 ◽  
pp. 1459-1463
Author(s):  
Chun Xue Song ◽  
Yi Zhang ◽  
Ying Yi Cao

In the recent past an increasing number of failure events have been observed for offshore structures due to exceptional environmental loading conditions such as large waves. The occurrence of these failure events indicates a possible improvement in the traditional modeling of environmental characteristics, which are the basis for the load models for structural analysis and design. In this paper, the seasonal and directional effects in the modeling of the significant wave height for structural reliability analysis are studied. The peak over threshold (POT) method is selected to model the extremes in the non-stationary point process for the wave heights. The time-varying parameters are taken into account with a cyclic changing pattern to reflect the seasonal behavior. Both the extreme values and the storm occurrence rate are investigated in the different seasons. The results are utilized for the load characterization of offshore structures to investigate their sensitivity to the changing seasonal effects in reliability analyses. An example of selected structure is discussed.

1995 ◽  
Vol 117 (3) ◽  
pp. 171-177 ◽  
Author(s):  
P. D. Spanos ◽  
R. Lu

Nonlinear forces acting on offshore structures are examined from a system identification perspective. The nonlinearities are induced by ocean waves and may become significant in many situations. They are not necessarily in the form of Morison’s equation. Various wave force models are examined. The force function is either decomposed into a set of base functions or it is expanded in terms of the wave and structural kinematics. The resulting nonlinear system is decomposed into a number of parallel no-memory nonlinear systems, each followed by a finite-memory linear system. A conditioning procedure is applied to decouple these linear sub-systems; a frequency domain technique involving autospectra and cross-spectra is employed to identify the linear transfer functions. The structural properties and the force transfer parameters are determined with the aid of the coherence functions. The method is verified using simulated data. It provides a versatile and noniterative approach for dealing with nonlinear interaction problems encountered in offshore structural analysis and design.


Author(s):  
Torfinn Hørte ◽  
Lorents Reinås ◽  
Jan Mathisen

Structural Reliability Analysis (SRA) methods have been applied to marine and offshore structures for decades. SRA has proven useful in life extension exercises and inspection planning of existing offshore structures. It is also a useful tool in code development, where the reliability level provided by the code is calibrated to a target failure probability obtained by SRA. This applies both to extreme load situations and also to a structural system under the influence of a time dependent degradation process such as fatigue. The current analysis methods suggested for service life estimation of subsea wells are deterministic, and these analyses are associated with high sensitivity to variations in input parameters. Thus sensitivity screening is often recommended for certain input parameters, and the worst case is then typically used as a basis for the analysis. The associated level of conservatism embedded in results from a deterministic analysis is not quantified, and it is therefore difficult to know and to justify if unnecessary conservatism can be removed from the calculations. By applying SRA to a wellhead fatigue analysis, the input parameters are accounted for with their associated uncertainty given by probability distributions. Analysis results can be generated by use of Monte-Carlo simulations or FORM/SORM (first/second order reliability methods), accounting for the full scatter of system relations and input variations. The level of conservatism can then be quantified and evaluated versus an acceptable probability of failure. This article presents results from a SRA of a fictitious but still realistic well model, including the main assumptions that were made, and discusses how SRA can be applied to a wellhead fatigue analysis. Global load analyses and local stress calculations were carried out prior to the SRA, and a response surface technique was used to interpolate on these results. This analysis has been limited to two hotspots located in each of the two main load bearing members of the wellhead system. The SRA provides a probability of failure estimate that may be used to give better decision support in the event of life extension of existing subsea wells. In addition, a relative uncertainty ranking of input variables provides insight into the problem and knowledge about where risk reducing efforts should be made to reduce the uncertainty. It should be noted that most attention has been given to the method development, and that more comprehensive analysis work and assessment of specific input is needed in a real case.


Author(s):  
Torfinn Hørte ◽  
Massimiliano Russo ◽  
Michael Macke ◽  
Lorents Reinås

Structural Reliability Analysis (SRA) methods have been applied to marine and offshore structures for decades. SRA has proven useful in life extension exercises and inspection planning of existing offshore structures. It is also a useful tool in code development, where the reliability level provided by the code is calculated by SRA and calibrated to a target failure probability. The current analysis methods for wellhead fatigue are associated with high sensitivity to variations in some input parameters. Some of these input parameters are difficult to assess, and sensitivity screening is often needed and the worst case is then typically used as a basis for the analysis. The degree of conservatism becomes difficult to quantify, and it is therefore equally difficult to find justification to avoid worst case assumptions. By applying SRA to the problem of wellhead fatigue, the input parameters are accounted for with their associated uncertainty given by probability distributions. In performing SRA all uncertainties are considered simultaneously, and the probability of fatigue failure is estimated and the conservatism is thereby quantified. In addition SRA also provides so-called uncertainty importance factors. These represent a relative quantification of which input parameter uncertainties contribute the most to the overall failure probability, and may serve well as guidance on where possible effort to reduce the uncertainty preferably should be made. For instance, instrumentation may be used to measure the actual structural response and thus eliminate the uncertainty that is associated with response calculations. Clearly measurements obtained from an instrumented system will have its own uncertainty. Other options could be to perform specific fatigue capacity testing or pay increased attention to logging of critical operational parameters such as the cement level in the annulus between the conductor and surface casing. This article deals with the use of measurements for fatigue life estimation. Continuous measurements of the BOP motion during the drilling operations have been obtained for a subsea well in the North Sea. These measurements are used both in conventional (deterministic) analysis and in SRA (probabilistic analysis) for fatigue in the wellhead system. From the deterministic analysis improved fatigue life results are obtained if the measured response replaces the response obtained by analysis. Furthermore, SRA is used to evaluate the appropriate magnitude of the design fatigue factor when fatigue analysis is based on measured response. It is believed that the benefit from measurements and SRA serve as an improved input to the decision making process in the event of life extension of existing subsea wells.


Author(s):  
Torfinn Hørte ◽  
Michael Macke ◽  
Andreas Buvarp Aardal ◽  
Lorents Reinås ◽  
Pål Bjønnes ◽  
...  

Abstract This paper outlines the methodology when performing structural reliability analysis (SRA) for wellhead fatigue of a complete field compared to individual wells. The field consist of several well and template systems from different suppliers. Further this paper will emphasize on added knowledge that can arise from the field vs. well analysis approach. Finally, some advice and guiding on necessary prerequisites for launching a field SRA will be shared. The methodology followed previous advices, with the added element that all wells were categorized depending on similarities in well design. Furthermore, a number of local finite element analyses for a specified systematic set of variations in input parameters have been performed by relevant equipment manufacturers to calculate the fatigue stress at critical hot spots (load-to-stress curves). Similar actions on loads had to be performed. A comprehensive set of global load analyses for each of the different rigs that have been operating on the field where needed to assess the cyclic fatigue loads from historical operations on each well. Finally, global and local analysis results were then gathered, and used as input to the SRA combined with a response surface technique. The additional effort for making the underlying global and local analyses covering all wells, and not only a single well, is limited for a given type of wellhead system. The field results now provide the operator with an improved basis for planning of future operations on the field, and enables optimization of the drilling plan and utilization of rigs throughout the varying environmental conditions for different seasons of the year and different operations, while managing the associated risk.


Author(s):  
J.I. Aguwa ◽  
S. Sadiku

This paper provides the results of structural reliability analysis carried out on the data of Nigerian grown Iroko tree (Chlorophora excelsa), to ascertain its structural performance as timber bridge beams. Five pieces of 50mm x 75mm x 3600mm of Nigerian grown Iroko hardwood were bought, seasoned naturally and 200 pieces of samples were prepared for determination of their strength properties, (which include bending strength parallel to grain, tensile strength parallel to grain, compressive strength parallel to grain, compressive strength perpendicular to grain and shear strength parallel to grain) at a moisture content of 18%, in accordance with the British Standard BS 373 of 1957. Statistical analysis was carried out using the strength properties for determination of mean, standard deviation, coefficient of variations, confidence limits and Chi-Square goodness of fits. Structural analysis and design of a timber bridge beam using the determined data from the Nigerian grown Iroko timber, in accordance with BS 5268 were carried out under the Ultimate Limit State of loading (ULSL). Reliability analysis was carried out to ascertain its level of safety using First-Order Reliability Method (FORM). Sensitivity analysis was also carried out by varying the depth of beam, imposed live load, breadth of the beam, unit weight of the Iroko timber, span of the beam as well as the end bearing length. The result revealed that the Nigerian grown Iroko timber is a satisfactory structural material for timber bridge beams at depth of 400mm, breadth of 150mm and span of 5000mm under the ULSL. The probabilities of failure of the Nigerian grown Iroko timber bridge beam in bending, shear, compression and deflection are respectively, under the specified conditions of loading.


2016 ◽  
Vol 36 (1) ◽  
pp. 18-25
Author(s):  
EN Ogork ◽  
AK Nakore

This paper presents the structural reliability assessment of a two span timber floor of strength class D40 designed in accordance with Eurocode 5 (2004).  The Structural analysis and design of the timber floor system was carried out using deterministic approach, considering both ultimate and serviceability limit states. Reliability analysis of the floor structural elements to ascertain its level of safety was carried out using first order reliability method (FORM) for the four modes of failure of bending shear, bearing and deflection. The reliability analysis involved investigation of the effects of variation of the applied dead to live load ratio and the cross sectional parameters of the floor. The results revealed that the deterministic design is satisfactory as limiting stresses and deflection were not exceeded. The primary floor joists had safety indices in shear and bending of 1.2 to 2.8 with decrease in dead to live load ratio and were below the recommended safety index of 3.8 specified in joint committee on structural safety (JCSS). The timber floor structural elements are more reliable in bearing, shear and deflection and critical in bending mode of failure. The section depth and span of floor elements are more sensitive in bending and deflection modes than shear and bearing modes. http://dx.doi.org/10.4314/njt.v36i1.3


1979 ◽  
Vol 101 (4) ◽  
pp. 625-632 ◽  
Author(s):  
S. S. Rao

The concepts of system reliability are applied for the structural reliability analysis and design of epicyclic gear trains. The reliability analysis is based on the representation of an epicyclic gear train as a series-parallel network. The power transmitted, the speed of the input shaft, the center distance between the gear pairs and the permissible stresses are assumed to be random variables following normal distribution. The layout of the gears and the speed ratios are assumed to be known. The face widths of the gears are taken as random design parameters. The design criterion is that the reliability of the gear train either in bending or surface wear failure mode at any of the output speeds must be equal to a specified value. The design of an epicyclic transmission system which gives four forward speeds and one reverse speed is considered for illustration. The results of the reliability-based design of the gear train are compared with those of the conventional deterministic design.


Sign in / Sign up

Export Citation Format

Share Document